【題目】已知整數a1 , a2 , a3 , a4 , …滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2012的值為( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012
科目:初中數學 來源: 題型:
【題目】任意一條線段EF,其垂直平分線的尺規作圖痕跡如圖所示.若連接EH,HF,FG,GE,則下列結論中,不一定正確的是( ) ![]()
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設格點多邊形的面積為S,該多邊形各邊上的格點個數和為a,內部的格點個數為b,則S=
a+b﹣1(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發對正三角形網格中的類似問題進行探究:正三角形網格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:![]()
根據圖中提供的信息填表:
格點多邊形各邊上的格點的個數 | 格點多邊形內部的格點個數 | 格點多邊形的面積 | |
多邊形1 | 8 | 1 | |
多邊形2 | 7 | 3 | |
… | … | … | … |
一般格點多邊形 | a | b | S |
則S與a、b之間的關系為S=(用含a、b的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等邊△ABC的邊長為2,P是BC邊上的任一點(與B、C不重合),連接AP,以AP為邊向兩側作等邊△APD和等邊△APE,分別與邊AB、AC交于點M、N(如圖1).![]()
(1)求證:AM=AN;
(2)設BP=x.
①若BM=
,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數關系式以及S的最小值;
③連接DE分別與邊AB、AC交于點G、H(如圖2).當x為何值時,∠BAD=15°?此時,以DG、GH、HE這三條線段為邊構成的三角形是什么特殊三角形,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質地都相同的乒乓球,球面上分別標有數字1,﹣2,3,﹣4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有種可能的結果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數字之積為偶數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E為BC上一點,∠BDE=∠DBC. ![]()
(1)求證:DE=EC;
(2)若AD=
BC,試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣
x+1與y軸交于點D. ![]()
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把△EFP放置在菱形ABCD中,使得頂點E,F,P分別在線段AB,AD,AC上,已知EP=FP=6,EF=6
,∠BAD=60°,且AB>6
.![]()
(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com