【題目】隨著中國傳統節日“端午節”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節省了多少錢?
【答案】(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后購買這批粽子比不打折節省了3120元.
【解析】
(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)根據節省錢數=原價購買所需錢數-打折后購買所需錢數,即可求出節省的錢數.
(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根據題意得:
,
解得:
.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后購買這批粽子比不打折節省了3640元.
科目:初中數學 來源: 題型:
【題目】如圖所示,直線a 、b被直線c所截,現給出下列四種條件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
![]()
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】五一期間,小明和小穎相約到樂山大佛景區參觀.小明乘私家車從成都出發1小時后,小穎乘坐高鐵從成都出發,先到樂山高鐵站,然后轉乘出租車到樂山大佛景區(換車時間忽略不計),兩人恰好同時到達景區.他們離開成都的距離y(千米)與時間t(小時)的關系如圖所示,請結合圖象解決下面問題.
(1)高鐵的平均速度是每小時多少千米?
(2)當小穎到達樂山高鐵站時,小明距離樂山大佛景區還有多少千米?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y=
x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.![]()
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為(、),BK的長是 , CK的長是;
②求點F的坐標;
③請直接寫出拋物線的函數表達式;
(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點M的運動過程中,S1S2(即S1與S2的積)的值是否發生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校要建一個面積是81平方米的草坪,草坪周圍用鐵柵欄圍繞,現有兩種方案:有人建議建成正方形,也有人建議建成圓形,如果從節省鐵柵欄費用的角度考慮(柵欄周長越小,費用越少),你選擇哪種方案?請說明理由.(π取3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖中的圖形均可以由“基本圖案”通過變換得到.(填序號)
![]()
(1)通過平移變換但不能通過旋轉變換得到的圖案是__;
(2)可以通過旋轉變換但不能通過平移變換得到的圖案是__;
(3)既可以由平移變換,也可以由旋轉變換得到的圖案是__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ A B C與
在平面直角坐標系中的位置如圖.
(1)分別寫出下列各點的坐標:
______ ;
_______ ;
_______ ;
(2)說明
由△ A B C經過怎樣的平移得到? ________________________________.
(3)若點
(
,
)是△ A B C內部一點,則平移后
內的對應點
的坐標為 ________ ;
(4)求△ A B C的面積..
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。
![]()
(1)求證:四邊形CMAN是平行四邊形。
(2)已知DE=4,FN=3,求BN的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,經過原點的拋物線可以用y=ax2+bx(a≠0)表示,對于這樣的拋物線:
(1)當拋物線經過點(﹣2,0)和(﹣1,3)時,求拋物線的表達式;
(2)當拋物線的頂點在直線y=﹣2x上時,求b的值;
(3)如圖,現有一組這樣的拋物線,它們的頂點A1、A2、…,An在直線y=﹣2x上,橫坐標依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數,且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1、B2 , …,Bn , 以線段AnBn為邊向左作正方形AnBnCnDn , 如果這組拋物線中的某一條經過點Dn , 求此時滿足條件的正方形AnBnCnDn的邊長.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com