【題目】在正方形ABCD中,點E是對角線AC上的動點(與點A,C不重合),連接BE.
(1)將射線BE繞點B順時針旋轉45°,交直線AC于點F.
①依題意補全圖1;![]()
②小研通過觀察、實驗,發現線段AE,FC,EF存在以下數量關系:
AE與FC的平方和等于EF的平方.小研把這個猜想與同學們進行交流,通過討論,形成證明該猜想的幾種想法:
想法1:將線段BF繞點B逆時針旋轉90°,得到線段BM,要證AE,FC,EF的關系,只需證AE,AM,EM的關系.
想法2:將△ABE沿BE翻折,得到△NBE,要證AE,FC,EF的關系,只需證EN,FN,EF的關系.
…
請你參考上面的想法,用等式表示線段AE,FC,EF的數量關系并證明;(一種方法即可)
(2)如圖2,若將直線BE繞點B順時針旋轉135°,交直線AC于點F.小研完成作圖后,發現直線AC上存在三條線段(不添加輔助線)滿足:其中兩條線段的平方和等于第三條線段的平方,請直接用等式表示這三條線段的數量關系.![]()
【答案】
(1)
解:①補全圖形,如圖1所示:
![]()
②AE2+FC2=EF2;理由如下:
過B作MB⊥BF,使BM=BF,連接AM、EM,如圖2所示:
![]()
∵四邊形ABCD是正方形,
∴∠ABC=90°,∠1=∠2=45°,AB=BC,
∵∠3=45°,
∴∠MBE=∠3=45°,
在△MBE和△FBE中,
,
∴△MBE≌△FBE(SAS),
∴EM=EF,∵∠4=90°﹣∠ABF,∠5=90°﹣∠ABF,
∴∠4=∠5,
在△AMB和△CFB中,
,
∴△AMB≌△CFB(SAS),
∴AM=FC,∠6=∠2=45°,
∴∠MAE=∠6+∠1=90°,
在Rt△MAE中,AE2+AM2=EM2,
∴AE2+FC2=EF2;
(2)
解:AF2+EC2=EF2;理由如下:
過B作MB⊥BF,使BM=BF,連接ME、MF、AM,
如圖3所示:
![]()
同(1)得:△MBF≌△EBF,
∴MF=EF,同(1)得:△AMB≌△CBE(SAS),
∴AM=EC,∠BAM=∠BCE=45°,
∴∠MAE=∠BAM+∠BAC=90°,
∴∠MAF=90°,
在Rt△MAF中,AF2+AM2=MF2,
∴AF2+EC2=EF2.
【解析】(1)①根據題意補全圖形即可;②過B作MB⊥BF,使BM=BF,連接AM、EM,由正方形的性質得出∠ABC=90°,∠1=∠2=45°,AB=BC,由SAS證明△MBE≌△FBE,得出EM=EF,證出∠4=∠5,由SAS證明△AMB≌△CFB,得出AM=FC,∠6=∠2=45°,證出∠MAE=∠6+∠1=90°,在Rt△MAE中,由勾股定理即可得出結論;(2)過B作MB⊥BF,使BM=BF,連接ME、MF、AM,同(1)得:△MBF≌△EBF,得出MF=EF,同(1)得:△AMB≌△CBE,得出AM=EC,∠BAM=∠BCE=45°,證出∠MAE=∠BAM+∠BAC=90°,得出∠MAF=90°,在Rt△MAF中,由勾股定理即可得出結論.
【考點精析】解答此題的關鍵在于理解全等三角形的性質的相關知識,掌握全等三角形的對應邊相等; 全等三角形的對應角相等.
科目:初中數學 來源: 題型:
【題目】已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE(圖中所說的角都是小于平角的角).
(1)如圖1,若∠COF=28°,則∠BOE=______°;若∠COF=
則∠BOE=_______;∠BOE與∠COF的數量關系為_________;
(2)將∠COE繞點O逆時針旋轉到如圖2所示的位置時,(1)中∠BOE和∠COF的數量關系否仍然成立?若成立,請說明理由?若不成立,求出∠BOE與∠COF的數量關系;
(3)當∠COE繞點O順時針旋轉到如圖3的位置時,(1)中∠BOE和∠COF的數量關系是否仍然成立?若成立,請說明理由;若不成立,請求出∠BOE與∠COF的數量關系.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了測量校園里水平地面上的一棵大樹的高度,數學綜合實踐活動小組的同學們開展如下活動:某一時刻,測得身高1.6m的小明在陽光下的影長是1.2m,在同一時刻測得這棵大樹的影長是3.6m,則此樹的高度是m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜邊AB上的中線,將△ACM沿直線CM折疊,點A落在點A1處,CA1與AB交于點N,且AN=AC,則∠A的度數是( 。
![]()
A. 30° B. 36° C. 50° D. 60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
![]()
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩條射線AM∥BN,線段CD的兩個端點C、D分別在射線BN、AM上,且∠A=∠BCD=108°.E是線段AD上一點(不與點A、D重合),且BD平分∠EBC.
(1)求∠ABC的度數.
(2)請在圖中找出與∠ABC相等的角,并說明理由.
(3)若平行移動CD,且AD>CD,則∠ADB與∠AEB的度數之比是否隨著CD位置的變化而發生變化?若變化,找出變化規律;若不變,求出這個比值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com