【題目】如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數.![]()
【答案】(1)證明:在△ADE和△CDF,
∵四邊形ABCD是菱形,∴AD=CD,∠A=∠C,
又∵∠DFC=∠DEA=90°,
∴Rt△ADE≌Rt△CDF;
(2)解:由△ADE≌△CDF,∴DE=DF,
∴∠DEF=
=65°,
∴∠BEF=90°﹣65°=25°.
【解析】(1)在直角△ADE和直角△CDF中,AD=CD,再證明Rt△ADE≌Rt△CDF;
(2)根據△ADE≌△CDF,可得DE=DF,即可求解.
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖1,已知:直線y=
x﹣3分別交x軸于A,交y軸于B,拋物線C1:y=x2+4x+b的頂點D在直線AB上.
(1)求拋物線C1的解析式;
(2)如圖2,將拋物線C1的頂點沿射線DA的方向平移得拋物線C2 , 拋物線C2交y軸于C,頂點為E,若CE⊥AB,求拋物線C2的解析式;
(3)如圖3,將直線AB沿y軸正方向平移t(t>0)個單位得直線l,拋物線C1的頂點在直線AB上平移得拋物線C3 , 直線l和拋物線C3相交于P、Q,求當t為何值時,PQ=3
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:EB=EC;
(2)若以點O、D、E、C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD的對角線AC、BD相交于點O,給出下列5個條件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,
從以上5個條件中任選2個條件為一組,能判定四邊形ABCD是平行四邊形的有( )組.
![]()
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀以下內容,并解決所提出的問題:
我們知道:
;
;所以
.
用與
相同的方法可計算得
;
.
歸納以上的學習過程,可猜測結論:
________.
利用以上的結論計算以下各題:①
________;②
=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線l1:y=
(x﹣2)2﹣2與x軸分別交于O、A兩點,將拋物線l1向上平移得到l2 , 過點A作AB⊥x軸交拋物線l2于點B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數表達式為( )![]()
A.y=
(x﹣2)2+4
B.y=
(x﹣2)2+3
C.y=
(x﹣2)2+2
D.y=
(x﹣2)2+1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com