【題目】“端午”節前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時從盒中隨機取出火腿粽子的概率為
;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機取出火腿粽子的概率為
.
(1)請你用所學知識計算:爸爸買的火腿粽子和豆沙粽子各有多少只;
(2)若小明一次從盒內剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計算)
【答案】(1)爸爸買了火腿粽子5只、豆沙粽子10只;(2)
.
【解析】
(1)設爸爸買的火腿粽子和豆沙粽子分別為x只、y只,然后根據概率的意義列出方程組,求解即可.
(2)根據題意,列出表格或畫樹狀圖,然后根據概率公式列式計算即可得解.
解:(1)設爸爸買的火腿粽子和豆沙粽子分別為x只、y只,
根據題意得:
,解得:
.
經檢驗符合題意.
∴爸爸買了火腿粽子5只、豆沙粽子10只.
(2)由題可知,盒中剩余的火腿粽子和豆沙粽子分別為2只、3只,我們不妨把兩只火腿粽子記為a1、a2;3只豆沙粽子記為b1、b2、b3,則可列出表格如下:
a1 | a2 | b1 | b2 | b3 | |
a1 | a1a2 | a1b1 | a1b2 | a1b3 | |
a2 | a2a1 | a2b1 | a2b2 | a2b3 | |
b1 | b1a1 | b1a2 | b1b2 | b1b3 | |
b2 | b2a1 | b2a2 | b2b1 | b2b3 | |
b3 | b3a1 | b3a2 | b3b1 | b3b2 |
∵一共有10種情況,恰有火腿粽子、豆沙粽子各1只的有6種情況,
∴P(火腿粽子、豆沙粽子各1只)=
.
科目:初中數學 來源: 題型:
【題目】如圖,我南海某海域A處有一艘捕魚船在作業時突遇特大風浪,船長馬上向我國漁政搜救中心發出求救信號,此時一艘漁政船正巡航到捕魚船正西方向的B處,該漁政船收到漁政求救中心指令后前去救援,但兩船之間有大片暗礁,無法直線到達,于是決定馬上調整方向,先向北偏東60°方向以每小時40海里的速度航行半小時到達C處,同時捕魚船低速航行到A點的正北2海里D處,漁政船航行到點C處時測得點D在南偏東53°方向上.
(1)求CD兩點的距離;
(2)漁政船決定再次調整航向前去救援,若兩船航速不變,并且在點E處相會合,求∠ECD的正弦值.(參考數據:
,
,
,
)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是射線y═
(x≥0)上一點,過點A作AB⊥x軸于點B,以AB為邊在其右側作正方形ABCD,過點A的雙曲線y=
交CD邊于點E,則
的值為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發的時間t(分)之間的關系如圖所示,下列結論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有300米
其中正確的結論有( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=
x2+bx+c經過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
![]()
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,E是正方形ABCD邊AB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉90°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①線段DB和DG的數量關系是 ;
②寫出線段BE,BF和DB之間的數量關系.
(2)當四邊形ABCD為菱形,∠ADC=60°,點E是菱形ABCD邊AB所在直線上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉120°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①如圖2,點E在線段AB上時,請探究線段BE、BF和BD之間的數量關系,寫出結論并給出證明;
②如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE=1,AB=2,直接寫出線段GM的長度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,關于x的二次函數y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關于x的一次函數y=﹣ax(a>0).
(1)試說明點C在一次函數的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數的圖象上,是否存在整數k,滿足
?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數圖象交于點F,當0<a≤2時,求線段EF的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,D是AB上一點,以BD為直徑的⊙O與AC相切于點E,交BC于點F,連接DF.
(1)求證:DF=2CE;
(2)若BC=3,sinB=
,求線段BF的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,等腰
的底邊
在
軸上,已知
,拋物線
(其中
)經過
三點,雙曲線
(其中
)經過點
軸,
軸,垂足分別為
且![]()
(1)求出
的值;當
為直角三角形時,請求出
的表達式;
(2)當
為正三角形時,直線
平分
,求
時
的取值范圍;
(3)拋物線
(其中
)有一時刻恰好經過
點,且此時拋物線與雙曲線
(其中
)有且只有一個公共點
(其中
),我們不妨把此時刻的
記作
,請直接寫出拋物線
(其中
)與雙曲線
(其中
)有一個公共點時
的取值范圍.(
是已知數)
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com