【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接BM,DN.
![]()
(1)求證:四邊形BMDN是菱形;
(2)若AB=2,AD=4,求MD的長.
【答案】(1)證明見解析;(2)![]()
【解析】
試題分析:(1)根據矩形性質求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;
(2)根據菱形性質求出DM=BM,在Rt△AMB中,根據勾股定理得出BM2=AM2+AB2,即可列方程求得.
(1)證明:∵四邊形ABCD是矩形
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中
![]()
∴△DMO≌△BNO(ASA),
∴OM=ON,
∵OB=OD,
∴四邊形BMDN是平行四邊形,
∵MN⊥BD,
∴平行四邊形BMDN是菱形.
(2)解:∵四邊形BMDN是菱形,
∴MB=MD,
設MD長為x,則MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(4﹣x)2+22,
解得:x=
,
答:MD長為
.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E,F分別為邊AB,CD的中點,連接DE、BF、BD.
![]()
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各組長度的3條線段,不能構成三角形的是( )
A. 3cm. 5cm. 7cm B. 5cm. 4cm 9cm C. 4cm. 6cm. 9cm D. 2cm 3cm 4cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列4×4的正方形網格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網格圖形是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com