【題目】如圖,O是等邊△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為4;③∠AOB=150°; ④四邊形AO BO′的面積為
; ⑤
.其中正確的結論是( )
A.①②③ B.①②③④ C.①②③⑤ D.①②③④⑤
![]()
科目:初中數學 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=40海里,某船從港口A出發,沿北偏東15°方向航行半小時后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向.求該船航行的速度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=DC,AD=BC,E,F在DB上兩點且BF=DE,若∠AEB=120°,∠ADB=30°,則∠BCF= ( )
![]()
A. 150° B. 40° C. 80° D. 90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為 __________________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關于⊙C的反稱點,如圖為點P及其關于⊙C的反稱點P′的示意圖.特別地,當點P′與圓心C重合時,規定CP′=0.
(1)當⊙O的半徑為1時.
①分別判斷點M(2,1),N(
,0),T(1,
)關于⊙O的反稱點是否存在?若存在,求其坐標;
②點P在直線y=﹣x+2上,若點P關于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣
x+2
與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關于⊙C的反稱點P′在⊙C的內部,求圓心C的橫坐標的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】強強想了很久才想通下面這道題,你能很快想出來嗎?在平面直角坐標系中,有一點P(a,b),若ab=0,則點P的位置在( 。
A. 原點 B. 橫軸上 C. 縱軸上 D. 坐標軸上
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com