【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④
<a< ![]()
⑤b>c.
其中含所有正確結論的選項是( )![]()
A.①③
B.①③④
C.②④⑤
D.①③④⑤
【答案】D
【解析】解:①∵函數開口方向向上,
∴a>0;
∵對稱軸在原點左側
∴ab異號,
∵拋物線與y軸交點在y軸負半軸,
∴c<0,
∴abc>0,
故①正確;
②∵圖象與x軸交于點A(﹣1,0),對稱軸為直線x=﹣1,
∴圖象與x軸的另一個交點為(3,0),
∴當x=2時,y<0,
∴4a+2b+c<0,
故②錯誤;
③∵圖象與x軸交于點A(﹣1,0),
∴當x=﹣1時,y=(﹣1)2a+b×(﹣1)+c=0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對稱軸為直線x=1
∴
=1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0
∵8a>0
∴4ac﹣b2<8a
故③正確
④∵圖象與y軸的交點B在(0,﹣2)和(0,﹣1)之間,
∴﹣2<c<﹣1
∴﹣2<﹣3a<﹣1,
∴
>a>
;
故④正確
⑤∵a>0,
∴b﹣c>0,即b>c;
故⑤正確;
故選:D.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖1,已知點E,F,G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據以下思路可以證明四邊形EFGH是平行四邊形:![]()
(1)如圖2,將圖1中的點C移動至與點E重合的位置,F,G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長為1的小正方形組成的5×5網格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.![]()
(1)求證:D是BC的中點;
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.![]()
(1)若苗圃園的面積為72平方米,求x;
(2)若平行與墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.![]()
(1)實踐與操作:作∠BAD的平分線交BC于點E,在AD上截取AF=AB,連接EF;(要求:尺規作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線y=
(x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是
.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y=
(x>0)的交點有( )![]()
A.0個
B.1個
C.2個
D.0個,或1個,或2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,轉盤A的三個扇形面積相等,分別標有數字1,2,3,轉盤B的四個扇形面積相等,分別有數字1,2,3,4.轉動A、B轉盤各一次,當轉盤停止轉動時,將指針所落扇形中的兩個數字相乘(當指針落在四個扇形的交線上時,重新轉動轉盤).![]()
(1)用樹狀圖或列表法列出所有可能出現的結果;
(2)求兩個數字的積為奇數的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com