【題目】如果兩個一次函數y=k1x+b1和y=k2x+b2滿足k1=k2,b1≠b2,那么稱這兩個一次函數為“平行一次函數”.如圖,已知函數y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數y=kx+b與y=﹣2x+4是“平行一次函數”.
(1)若函數y=kx+b的圖象過點(3,1),求b的值;
(2)若函數y=kx+b的圖象與兩坐標軸圍成的三角形和△AOB構成位似圖形,位似中心為原點,位似比為1:2,求函數y=kx+b的表達式.
![]()
【答案】(1)7;(2)y=﹣2x+2或y=﹣2x﹣2.
【解析】
試題分析:(1)根據平行一次函數的定義可知:k=﹣2,再利用待定系數法求出b的值即可;
(2)根據位似比為1:2可知:函數y=kx+b與兩坐標的交點坐標,再利用待定系數法求出函數y=kx+b的表達式.
試題解析:(1)由已知得:k=﹣2,把點(3,1)和k=﹣2代入y=kx+b中得:1=﹣2×3+b,∴b=7;
(2)根據位似比為1:2得:函數y=kx+b的圖象有兩種情況:
①不經過第三象限時,過(1,0)和(0,2),這時表達示為:y=﹣2x+2;
②不經過第一象限時,過(﹣1,0)和(0,﹣2),這時表達示為:y=﹣2x﹣2;
![]()
科目:初中數學 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發一直勻速前行,小明后出發.家到公園的距離為2500m,如圖是小明和爸爸所走的路程s(m)與步行時間t(min)的函數圖象.
(1)直接寫出小明所走路程s與時間t的函數關系式;
(2)小明出發多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20min到達公園,則小明在步行過程中停留的時間需作怎樣的調整?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC , 點E是BC的中點,連接AC , DE , AC=AB , DE∥AB . 求證:四邊形AECD是矩形.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com