【題目】小強擲兩枚質地均勻的骰子,每個骰子的六個面上分別刻有1到6的點數,則兩枚骰子點數相同的概率為
【答案】![]()
【解析】解:列表得:
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
由表可知一共有36種情況,兩枚骰子點數相同的有6種,
所以兩枚骰子點數相同的概率=
=
,
故答案為:
.
首先根據題意列出表格,然后由表格即可求得所有等可能的結果與兩枚骰子點數相同的情況,再利用概率公式即可求得答案.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).![]()
(1)在圖中作出
關于
軸對稱的
.
(2)寫出點
的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從﹣3,﹣1,0,1,3這五個數中隨機抽取一個數記為a,再從剩下的四個數中任意抽取一個數記為b,恰好使關于x,y的二元一次方程組
有整數解,且點(a,b)落在雙曲線
上的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F為線段AD的中點,連接CF![]()
(1)如圖1,當D點在BC上時,求證:①BE=2CF,②BE⊥CF.
(2)如圖2,把△DEC繞C點順時針旋轉一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結論并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD(四個邊相等,四個角為直角)中,E,F分別為AD,BC的中點,P為對角線BD上的一個動點,則下列線段的長等于AP+EP最小值的是( )
![]()
A. AB B. DE C. AF D. BD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,△ABC是直角三角形,∠ACB=90°,點B、C都在第一象限內,CA⊥x軸,垂足為點A,反比例函數y1=
的圖象經過點B;反比例函數y2=
的圖象經過點C(
,m).![]()
(1)求點B的坐標;
(2)△ABC的內切圓⊙M與BC,CA,AB分別相切于D,E,F,求圓心M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚. ![]()
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學校現有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某物流公司引進A、B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續搬運5小時,A種機器人于某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數圖象,根據圖象提供的信息,解答下列問題:![]()
(1)求yB關于x的函數解析式;
(2)如果A、B兩種機器人連續搬運5個小時,那么B種機器人比A種機器人多搬運了多少千克?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com