【題目】如圖,在平面直角坐標系中,A(﹣2,2),B(﹣3,﹣2)
![]()
(1)若點C與點A關于原點O對稱,則點C的坐標為 ;
(2)將點A向右平移5個單位得到點D,則點D的坐標為 ;
(3)由點A,B,C,D組成的四邊形ABCD內(不包括邊界)任取一個橫、縱坐標均為整數的點,求所取的點橫、縱坐標之和恰好為零的概率.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣4x+3.
(1)把這個二次函數化成y=a(x﹣h)2+k的形式;
(2)寫出二次函數的對稱軸和頂點坐標;
(3)求二次函數與x軸的交點坐標;
(4)畫出這個二次函數的圖象; ![]()
(5)觀察圖象并寫出y隨x增大而減小時自變量x的取值范圍.
(6)觀察圖象并寫出當x為何值時,y>0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交點坐標是(0,3).
(1)求出m的值并畫出這條拋物線; ![]()
(2)求拋物線與x軸的交點和拋物線頂點的坐標;
(3)當x取什么值時,y的值隨x值的增大而減小?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(2,3),B(1,1),C(4,1),M(6,3).![]()
(1)將△ABC平原得到△A1B1C1 , 其中點A,B,C的對應點分別是A1 , B1 , C1 , 且點A1的坐標是(3,6),在圖中畫出△A1B1C1 .
(2)將(1)中的△A1B1C1繞點M順時針旋轉90°,畫出旋轉后的△A2B2C2(其中點A2 , B2 , C2的對應點分別是A1 , B1 , C1),并寫出點A2 , B2 , C2的坐標.
(3)(2)中的△A2B2C2能通過旋轉△ABC得到嗎?若能,請寫出旋轉的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC中,∠BAC=78°,AB=AC,P為△ABC內一點,連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數為_______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在6×8的網格圖中,每個小正方形邊長均為1,原點O和△ABC的頂點均為格點.![]()
(1)以O為位似中心,在網格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)
(2)若點C和坐標為(2,4),則點A′的坐標為( , ),點C′的坐標為( , ),S△A′B′C′:S△ABC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=
,且經過點(2,0),下列說法: ①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是拋物線上的兩點,則y1<y2 ,
其中說法正確的是( )![]()
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com