【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A沿AB向點(diǎn)B以1cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B沿BC向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止.設(shè)P,Q兩點(diǎn)移動(dòng)時(shí)間為 x S,ΔPDQ的面積為
,
.![]()
(1)當(dāng)x為何值時(shí),ΔPBQ為等腰三角形?
(2)請(qǐng)求出y與x的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時(shí),ΔPDQ面積的為
?
(4)直接寫(xiě)出當(dāng)x為何值時(shí),ΔPDQ是等腰三角形.
【答案】(1)
;(2)
;(3)1或5;(4)
或
.
【解析】試題分析:
(1)當(dāng)PB=QB時(shí),△PBQ為等腰三角形,由此可得:
,解方程可求得答案;
(2)由圖可知:△PDQ的面積=梯形PBCD的面積-△PBQ的面積-△DCQ的面積,即:
,由此可得
與
間的函數(shù)關(guān)系;
(3)把(2)中所得函數(shù)關(guān)系式中的
代換成31可得關(guān)于
的方程,解方程即可求解;
(4)由圖可知存在①DP=DQ;②DQ=PQ;兩種情況可能結(jié)合勾股定理列出方程求解進(jìn)行討論可得答案.
試題解析:
(1)∵在矩形ABCD中,∠B=90°,
∴當(dāng)PB=QB時(shí),△PBQ為等腰三角形,由此可得:
,解得:
,
∴當(dāng)
時(shí),△PBQ為等腰三角形;
(2)由圖可得:△PDQ的面積=梯形PBCD的面積-△PBQ的面積-△DCQ的面積,
∴
= ![]()
=![]()
=
.
∴
與
間的函數(shù)關(guān)系為:
;
(3)在
中,當(dāng)
時(shí),可得
,解得
,
∴當(dāng)
或
時(shí),△PDQ的面積為31cm2;
(4)由已知和勾股定理易得:
,
,
;
①由
可得:
,解得
,
,∴該種情況不成立;
②由
可得:
,解得:
,
,∴可取
;
③由
可得:
,解得
,
,∴可取
;
綜上所述:當(dāng)
或
時(shí),△PDQ是等腰三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“在△ABC中,若∠A>∠B+∠C,則∠A>90°”時(shí),應(yīng)先假設(shè)_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點(diǎn)C.下面五個(gè)結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當(dāng)a=
時(shí),△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有三個(gè).那么,其中正確的結(jié)論是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=
,AF=
,求AE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,則(﹣2)⊕3= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)市民的節(jié)水意識(shí),某市對(duì)居民用水實(shí)行“階梯收費(fèi)”:規(guī)定每戶每月不超過(guò)月用水標(biāo)準(zhǔn)部分的水價(jià)為1.5元/噸,超過(guò)月用水標(biāo)準(zhǔn)量部分的水價(jià)為2.5元/噸.該市小明家5月份用水12噸,交水費(fèi)20元.請(qǐng)問(wèn):該市規(guī)定的每戶月用水標(biāo)準(zhǔn)量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距450千米,甲、乙兩車分別從A、B兩地同時(shí)出發(fā),相向而行.已知甲車速度為120千米/時(shí),乙車速度為80千米/時(shí),經(jīng)過(guò)t小時(shí)兩車相距50千米,則t的值是( )
A.2或2.5
B.2或10
C.10或12.5
D.2或12.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com