【題目】如圖4,四邊形ACDE、BAFG是以△ABC的邊AC、AB為邊向△ABC外所作的正方形.
求證:(1)EB=FC.(2)EB⊥FC.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)根據正方形的性質可得AB=AF,AC=AE,∠BAF=∠CAE=90°,然后求出∠BAE=∠CAF,再利用“邊角邊”證明△ABE和△AFC全等,根據全等三角形對應邊相等可得EB=CF;
(2)根據全等三角形對應角相等可得∠AEB=∠ACF,連接CE,設EB、CF相交于O,然后求出∠OEC+∠OCE=90°,再求出∠COE=90°,然后根據垂直的定義即可得證.
試題解析:(1)∵四邊形ACDE、BAFG都是正方形,
∴AB=AF,AC=AE,∠BAF=∠CAE=90°,
∴∠BAF+∠BAC=∠CAE+∠BAC,
即∠BAE=∠CAF,
在△ABE和△AFC中,
,∴△ABE≌△AFC(SAS),
∴EB=FC;
(2)∵△ABE≌△AFC,
∴∠AEB=∠ACF,
連接CE,設EB、CF相交于O,
則∠OEC+∠OCE=∠OEC+∠ACE+∠BEA=∠ACE+∠AEC=90°,
在△OCE中,∠COE=180°-(∠OEC+∠OCE)=180°-90°=90°,
∴EB⊥FC.
![]()
科目:初中數學 來源: 題型:
【題目】隨著人們“節能環保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家帶來商機.某自行車行經營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數量不超過A型車數量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以點C為圓心,BC為半徑的圓交AB于點D,交AC于點E.
(1)若∠A=25°,求
的度數. (2)若BC=9,AC=12,求BD的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】形狀、大小完全相同的三角形________(填“能”或“不能”)鋪滿地面;形狀、大小完全相同的四邊形________(填“能”或“不能”)鋪滿地面.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com