【題目】(問(wèn)題背景)如圖1所示,在
中,
,
,點(diǎn)D為直線
上的個(gè)動(dòng)點(diǎn)(不與B、C重合),連結(jié)
,將線段
繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,使點(diǎn)A旋轉(zhuǎn)到點(diǎn)E,連結(jié)
.
(問(wèn)題初探)如果點(diǎn)D在線段
上運(yùn)動(dòng),通過(guò)觀察、交流,小明形成了以下的解題思路:過(guò)點(diǎn)E作
交直線
于F,如圖2所示,通過(guò)證明
______,可推證
是_____三角形,從而求得
______°.
(繼續(xù)探究)如果點(diǎn)D在線段
的延長(zhǎng)線上運(yùn)動(dòng),如圖3所示,求出
的度數(shù).
(拓展延伸)連接
,當(dāng)點(diǎn)D在直線
上運(yùn)動(dòng)時(shí),若
,請(qǐng)直接寫出
的最小值.
![]()
圖1 圖2 圖3
【答案】(1)△ADB,等腰直角,135°;(2)45°;(3)
.
【解析】
(1)問(wèn)題初探:由旋轉(zhuǎn)的性質(zhì)得到∠ADE=90°,AD=DE,則∠ADB+∠EDF=∠ADB+∠DAB=90°,得到∠DAB=∠EDF,則根據(jù)AAS得到△DEF≌△ADB;則EF=BD,DF=AB,則AB=AC=DF,得到BD=CF=EF,則△CEF是等腰直角三角形;從而得到∠DCE=135°;
(2)繼續(xù)探究:過(guò)點(diǎn)E作EG⊥CD,與(1)同理,可證△ABD≌△DGE,得到BD=GE,AB=DG=BC,則BD=CG=GE,即可得到
;
(3)拓展延伸:當(dāng)點(diǎn)D在直線BC上運(yùn)動(dòng)時(shí),當(dāng)BE⊥CE時(shí),BE的長(zhǎng)度是最小值,由(2)可知
,則△BCE為等腰直角三角形,則
.
解:(1)問(wèn)題初探:如圖,
![]()
由旋轉(zhuǎn)的性質(zhì),得:∠ADE=90°,AD=DE,
∴∠ADB+∠EDF=90°,
∵∠ABC=90°,
∴∠ADB+∠DAB=90°,
∴∠DAB=∠EDF,
∵EF⊥BC,
∴∠ABC=∠DFE=90°,
∴△ADB≌△DEF(AAS);
∴BD=EF,AB=DF,
∴AB=DF=BC,
∴BD+DC=DC+CF,
∴BD=CF=EF,
∴△CEF是等腰直角三角形;
∴∠CEF=45°,
∴∠DCE=∠CEF+∠CFE=45°+90°=135°;
故答案為:△ADB,等腰直角,135°;
(2)繼續(xù)探究:如圖,過(guò)點(diǎn)E作EG⊥CD,
![]()
∵∠ADE=∠ADB+∠GDE=90°,∠ADB+∠DAB=90°,
∴∠GDE=∠DAB,
∵∠ABD=∠DGE=90°,AD=DE,
∴△ABD≌△DGE(AAS),
∴BD=GE,AB=DG=BC,
∴BD+BG=BG+GC,
∴CG=BD=GE,
∴△CEG是等腰直角三角形,
∴∠DCE=45°;
(3)拓展延伸:如圖,當(dāng)點(diǎn)D在直線BC上運(yùn)動(dòng)時(shí),當(dāng)BE⊥CE時(shí),BE的長(zhǎng)度是最小值;
![]()
則∠BEC=90°.
由(2)可知,∠DCE=45°,
∴△BCE是等腰直角三角形,
∴BE=CE,
∵
,
∴
;
∴BE的最小值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在△ABC內(nèi),BD=BC,∠DBC=60°,點(diǎn)E在△ABC外,∠BCE=150°,∠ABE=60°.
![]()
(1)求證:△ADB≌△ADC , 并求出∠ADB的度數(shù);
(2)小明說(shuō)△ABE是等腰三角形,小華說(shuō)△ABE是等邊三角形.請(qǐng)問(wèn) 說(shuō)法更準(zhǔn)確,并說(shuō)明理由.
(3)連接DE,若DE⊥BD,DE=8,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知
.
(1)用直尺和圓規(guī)畫出
的平分線
(保留作圖痕跡,不寫作法,不用證明)
(2)在射線
上任意選取一點(diǎn)
,再在射線
上選取一點(diǎn)
,要求
為鈍角.
①在射線
上找到所有使得
的點(diǎn)
.
②寫出
與
之間的數(shù)量關(guān)系,并證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣
x+3的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,C是x軸上一動(dòng)點(diǎn),連接BC,將△ABC沿BC所在的直線折疊,當(dāng)點(diǎn)A落在y軸上時(shí),點(diǎn)C的坐標(biāo)為__.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了使電線桿穩(wěn)固的垂直于地面,兩側(cè)常用拉緊的鋼絲繩索固定,由于鋼絲繩的交點(diǎn)
在電線桿的上三分之一處,所以知道
的高度就可以知道電線桿
的高度了.要想得到
的高度,需要測(cè)量出一些數(shù)據(jù),然后通過(guò)計(jì)算得出.
請(qǐng)你設(shè)計(jì)出要測(cè)量的對(duì)象:________;
請(qǐng)你寫出計(jì)算
高度的思路:________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
同時(shí)滿足下列條件:對(duì)稱軸是
;最值是
;二次函數(shù)的圖象與
軸有兩個(gè)交點(diǎn),其橫坐標(biāo)的平方和為
,則
的值是( )
A.
或
B.
C.
D.
或![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任意兩點(diǎn)關(guān)于它們所連線段的中點(diǎn)成中心對(duì)稱,在平面直角坐標(biāo)系中,任意兩點(diǎn)P(x1,y1),Q (x2,y2)的對(duì)稱中心的坐標(biāo)為
,如圖.
![]()
(1)在平面直角坐標(biāo)系中,若點(diǎn)P1(0,-1),P2(2,3)的對(duì)稱中心是點(diǎn)A,則點(diǎn)A的坐標(biāo)為________;
(2)另取兩點(diǎn)
,
.有一電子青蛙從點(diǎn)P1處開(kāi)始依次作關(guān)于點(diǎn)A,B,C的循環(huán)對(duì)稱跳動(dòng),即第一次跳到點(diǎn)P1關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P2處,接著跳到點(diǎn)P2關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P3處,第三次再跳到點(diǎn)P3關(guān)于點(diǎn)C的對(duì)稱點(diǎn)P4處,第四次再跳到點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5處,…,則點(diǎn)
的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,若點(diǎn)A(3,0)、B(4,1)到一次函數(shù)y=kx+4(k≠0)圖象的距離相等,則k的值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在
中,
.
(1)如圖1,
是
邊上兩點(diǎn),
, 求
的度數(shù).
(2)點(diǎn)
是
邊上兩動(dòng)點(diǎn)(不與
重合), 點(diǎn)
在點(diǎn)
左側(cè),且
,點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)為
,連接
.
①依題意將圖2補(bǔ)全.
②小明通過(guò)觀察和實(shí)驗(yàn),提出猜想:在點(diǎn)
運(yùn)動(dòng)的過(guò)程中,始終有
為等腰直角三角形,他把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成以下證明猜想的思路:要想證明
為等腰直角三角形,只需證
.
請(qǐng)參考上面的思路,幫助小明證明△APM 為等腰直角三角形.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com