【題目】如圖,在平面直角坐標(biāo)系中,矩形OADB的頂點A,B的坐標(biāo)分別為A(﹣6,0),B(0,4).過點C(﹣6,1)的雙曲線y=
(k≠0)與矩形OADB的邊BD交于點E.
(1)填空:OA= ,k= ,點E的坐標(biāo)為 ;
(2)當(dāng)1≤t≤6時,經(jīng)過點M(t﹣1,﹣
t2+5t﹣
)與點N(﹣t﹣3,﹣
t2+3t﹣
)的直線交y軸于點F,點P是過M,N兩點的拋物線y=﹣
x2+bx+c的頂點.
①當(dāng)點P在雙曲線y=
上時,求證:直線MN與雙曲線y=
沒有公共點;
②當(dāng)拋物線y=﹣
x2+bx+c與矩形OADB有且只有三個公共點,求t的值;
③當(dāng)點F和點P隨著t的變化同時向上運動時,求t的取值范圍,并求在運動過程中直線MN在四邊形OAEB中掃過的面積.
![]()
【答案】(1)6,﹣6,(﹣
,4);(2)①證明見解析;②t=
或t=
;③
.
【解析】(1)根據(jù)題意將相關(guān)數(shù)據(jù)代入.
(2)①用t表示直線MN解析式,及b,c,得到P點坐標(biāo)帶入雙曲線y=
解析式,證明關(guān)于t的方程無解即可;
②根據(jù)拋物線開口和對稱軸,分別討論拋物線過點B和在BD上時的情況;
③由②中部分結(jié)果,用t表示F、P點的縱坐標(biāo),求出t的取值范圍及直線MN在四邊形OAEB中所過的面積.
解:(1)∵A點坐標(biāo)為(﹣6,0)
∴OA=6
∵過點C(﹣6,1)的雙曲線y=![]()
∴k=﹣6
y=4時,x=![]()
∴點E的坐標(biāo)為(﹣
,4)
故答案為:6,﹣6,(﹣
,4)
(2)①設(shè)直線MN解析式為:y1=k1x+b1
由題意得:![]()
解得
,
∵拋物線y=﹣
過點M、N,
∴
,
解得![]()
∴拋物線解析式為:y=﹣
x2﹣x+5t﹣2
∴頂點P坐標(biāo)為(﹣1,5t﹣
)
∵P在雙曲線y=﹣
上
∴(5t﹣
)×(﹣1)=﹣6
∴t=![]()
此時直線MN解析式為:
聯(lián)立![]()
∴8x2+35x+49=0
∵△=352﹣4×8×48=1225﹣1536<0
∴直線MN與雙曲線y=﹣
沒有公共點.
②當(dāng)拋物線過點B,此時拋物線y=﹣
x2+bx+c與矩形OADB有且只有三個公共點
∴4=5t﹣2,得t=![]()
當(dāng)拋物線在線段DB上,此時拋物線與矩形OADB有且只有三個公共點
∴
,得t=![]()
∴t=
或t=![]()
③∵點P的坐標(biāo)為(﹣1,5t﹣
)
∴yP=5t﹣![]()
當(dāng)1≤t≤6時,yP隨t的增大而增大
此時,點P在直線x=﹣1上向上運動
∵點F的坐標(biāo)為(0,﹣
)
∴yF=﹣![]()
∴當(dāng)1≤t≤4時,隨者yF隨t的增大而增大
此時,隨著t的增大,點F在y軸上向上運動
∴1≤t≤4
當(dāng)t=1時,直線MN:y=x+3與x軸交于點G(﹣3,0),與y軸交于點H(0,3)
當(dāng)t=4﹣
時,直線MN過點A.
當(dāng)1≤t≤4時,直線MN在四邊形AEBO中掃過的面積為
S=
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠前5個月生產(chǎn)的總產(chǎn)量y(件)與時間x(月)的關(guān)系如圖所示,則下列說法正確的是( )
![]()
A. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月產(chǎn)量逐月減少
B. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月產(chǎn)量與3月持平
C. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月停產(chǎn)
D. 1﹣3月的月產(chǎn)量逐月持平,4、5兩月停產(chǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
![]()
A. 1 B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校創(chuàng)建“環(huán)保示范學(xué)校”,為了解全校學(xué)生參加環(huán)保類杜團的意愿,在全校隨機抽取了50名學(xué)生進行問卷調(diào)查,問卷給出了五個社團供學(xué)生選擇(學(xué)生可根據(jù)自己的愛好選擇一個社團,也可以不選),對選擇了社團的學(xué)生的問卷情況進行了統(tǒng)計,如表:
社團名稱 | A.酵素制作社團 | B.回收材料小制作社團 | C.垃圾分類社團 | D.環(huán)保義工社團 | E.綠植養(yǎng)護社團 |
人數(shù) | 10 | 15 | 5 | 10 | 5 |
(1)填空:在統(tǒng)計表中,這5個數(shù)的中位數(shù)是 ;
(2)根據(jù)以上信息,補全扇形圖(圖1)和條形圖(圖2);
(3)該校有1400名學(xué)生,根據(jù)調(diào)查統(tǒng)計情況,請估計全校有多少學(xué)生愿意參加環(huán)保義工社團;
(4)若小詩和小雨兩名同學(xué)在酵素制作社團或綠植養(yǎng)護社團中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學(xué)同時選擇綠植養(yǎng)護社團的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依次剪6張正方形紙片拼成如圖示意的圖形,圖形中正方形①的面積為1,正方形②的面積為
.
![]()
(1)請用含
的式子直接寫出正方形⑤的面積;
(2)若正方形⑥與正方形③的面積相等,求正方形④和正方形⑤的面積比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)尺規(guī)作圖:如圖,AB為⊙O的直徑,過點A作⊙O的切線m;
![]()
(2)在直線m上任取一點P(A點除外),連接PB交圓O與點C,請補全圖形,并證明: ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=
∶DE=4∶1,求DE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙十一購物狂歡節(jié),天貓“某玩具旗艦店”對樂高積木系列玩具將推出買一送一活動,根據(jù)積木數(shù)量的不同,廠家會訂制不同型號的外包裝盒,所有外包裝盒均為雙層上蓋的長方體紙箱(上蓋紙板面積剛好等于底面面積的2倍,如圖1),長方體紙箱的長為
厘米,寬為
厘米,高為
厘米.
![]()
(1)請用含有
,
,
的代數(shù)式表示制作長方體紙箱需要________平方厘米紙板;
(2)如圖2為若干包裝好的同一型號玩具堆成幾何體的三視圖,則組成這個幾何體的玩具個數(shù)最少為多少個;
(3)由于旗艦店在雙十一期間推出買一送一的活動,現(xiàn)要將兩個同一型號的樂高積木包裝在同一個大長方體的外包裝盒內(nèi)(如圖1),已知單個樂高積木的長方體紙盒長和高相等,且寬小于長.如圖3所示,現(xiàn)有甲,乙兩種擺放方式,請分別計算甲,乙兩種擺放方式所需外包裝盒的紙板面積(包裝盒上蓋朝上),并比較哪一種方式所需紙板面積更少,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線交x軸于A、B兩點,交y軸于C點,A點坐標(biāo)為(﹣1,0),OC=2,OB=3,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)P為坐標(biāo)平面內(nèi)一點,以B、C、D、P為頂點的四邊形是平行四邊形,求P點坐標(biāo);
(3)若拋物線上有且僅有三個點M1、M2、M3使得△M1BC、△M2BC、△M3BC的面積均為定值S,求出定值S及M1、M2、M3這三個點的坐標(biāo).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com