【題目】如圖,在平面直角坐標(biāo)系
中,直線
與函數(shù)
的圖象交于
,
兩點(diǎn),且點(diǎn)
的坐標(biāo)為
.
![]()
(1)求
的值;
(2)已知點(diǎn)
,過點(diǎn)
作平行于
軸的直線,交直線
于點(diǎn)
,交函數(shù)
的圖象于點(diǎn)
.
①當(dāng)
時(shí),求線段
的長;
②若
,結(jié)合函數(shù)的圖象,直接寫出
的取值范圍.
【答案】(1)
;(2)①
;②
或![]()
【解析】
(1)先把點(diǎn)A代入一次函數(shù)得到a的值,再把點(diǎn)A代入反比例函數(shù),即可求出k;
(2)①根據(jù)題意,先求出m的值,然后求出點(diǎn)C、D的坐標(biāo),即可求出CD的長度;
②根據(jù)題意,當(dāng)PC=PD時(shí),點(diǎn)C、D恰好與點(diǎn)A、B重合,然后求出點(diǎn)B的坐標(biāo),結(jié)合函數(shù)圖像,即可得到m的取值范圍.
解:(1)把
代入
,得
,
∴點(diǎn)A為(1,3),
把
代入
,得
;
(2)當(dāng)
時(shí),點(diǎn)P為(2,0),如圖:
![]()
把
代入直線
,得:
,
∴點(diǎn)C坐標(biāo)為(2,4),
把
代入
,得:
,
∴
;
②根據(jù)題意,當(dāng)PC=PD時(shí),點(diǎn)C、D恰好與點(diǎn)A、B重合,如圖,
![]()
∵
,解得:
或
(即點(diǎn)A),
∴點(diǎn)B的坐標(biāo)為(
),
由圖像可知,當(dāng)
時(shí),有
點(diǎn)P在
的左邊,或點(diǎn)P在
的右邊取到,
∴
或
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上周六上午
點(diǎn),小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個(gè)服務(wù)區(qū)休息了半小時(shí),然后直達(dá)姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離
(千米)與他們路途所用的時(shí)間
(時(shí))之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:
(1)求直線
所對應(yīng)的函數(shù)關(guān)系式;
(2)已知小穎一家出服務(wù)區(qū)后,行駛
分鐘時(shí),距姥姥家還有
千米,問小穎一家當(dāng)天幾點(diǎn)到達(dá)姥姥家?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點(diǎn)P滿足S△PAB=
S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機(jī)調(diào)查了九年級學(xué)生對A,B,C,D,E五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)統(tǒng)計(jì)圖.
請根據(jù)圖中所提供的信息,完成下列問題:
(1)本次被調(diào)查的學(xué)生的人數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為 ;
(4)若該中學(xué)有4000名學(xué)生,請估計(jì)該校喜愛C,D兩類校本課程的學(xué)生共有多少名.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足
,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.
![]()
(1)當(dāng)⊙O的半徑r=2時(shí),A(3,0),B(0,4),C(
,2),D(
,
)中,⊙O的“隨心點(diǎn)”是 ;
(2)若點(diǎn)E(4,3)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+b(b≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)
,點(diǎn)
在反比例函數(shù)
的圖象上,
軸于點(diǎn)
連結(jié)
交
于點(diǎn)
,若
,則
與
的面積比為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形
兩條對角線
、
交于
,過
任作一直線
與邊
,
交于
,
,
的垂直平分線與邊
,
交于
,
.設(shè)正方形
的面積為
,四邊形
的面積為
.
![]()
(1)求證:四邊形
是正方形;
(2)若
,求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過矩形
的對角線
的中點(diǎn)
作
,交
邊于點(diǎn)
,交
邊于點(diǎn)
,分別連接
、
.若
,
,則
的長為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com