【題目】作圖題:
![]()
(1)如圖①,已知:
.求作:射線
,使
平分
.(要求:尺規作圖,不寫作法,但需保留作圖痕跡) .
(2)題(1)中作圖的依據是全等三角形判定方法中的__________.
(3)在圖②中作出
,使它與
關于
軸對稱.
(4)在圖②中的
軸上找到一點
,使
的周長最小.
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且
.連接PB,試探究PA,PB,PC滿足的等量關系.
![]()
圖1 圖2
(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到
,連接
,如圖1所示.
由
≌
可以證得
是等邊三角形,再由
可得∠APC的大小為 度,進而得到
是直角三角形,這樣可以得到PA,PB,PC滿足的等量關系為 ;
(2)如圖2,當α=120°時,請參考(1)中的方法,探究PA,PB,PC滿足的等量關系,并給出證明;
(3)PA,PB,PC滿足的等量關系為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.
(1)求證:△ABE≌△BCN;
(2)若N為AB的中點,求tan∠ABE.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AD是它的角平分線.
(1)如圖1,求證:S△ABD:S△ACD=AB:AC=BD:CD;
(2)如圖2,E是AB上的點,連接ED,若BD=3,BE=CD=2,AE=2CD,求證:△BED是等腰三角形;
(3)在圖1中,若3∠BAC=2∠C,∠ADB>∠B>∠BAD,直接寫出∠BAC的取值范圍 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△CDE都是等邊三角形,B,C,D三點在一條直線上,AD與BE交于點P,AC,BE交于點M,AD,CE交于點N,連接MN,則下列五個結論:①AD=BE;②∠BMC=∠ANE;③∠APM=60°;④AN=BM;⑤△CMN是等邊三角形.其中一定正確的是__________.(填出所有正確結論的序號)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據上述定義,當m=2,n=3時,如圖1,線段BC與線段OA的距離是 ,當m=5,n=3時,如圖2,線段BC與線段OA的距離(即線段AB的長)為 .
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G為對角線BD(不含B點)上任意一點,將△ABG繞點B逆時針旋轉60°得到△EBF,當AG+BG+CG取最小值時EF的長( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com