【題目】如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,下列結(jié)論:①tan∠AEC=
;②S△ABC+S△CDE≧S△ACE;③BM⊥DM;④BM=DM,正確結(jié)論的個數(shù)是( )
![]()
A、1個 B、2個 C、3個 D、4個
【答案】D.
【解析】
試題解析:∵△ABC和△CDE均為等腰直角三角形,
∴AB=BC,CD=DE,
∴∠BAC=∠BCA=∠DCE=∠DEC=45°,
∴∠ACE=90°;
∵△ABC∽△CDE
∴![]()
①∴tan∠AEC=
,
∴tan∠AEC=
;故本選項正確;
②∵S△ABC=
a2,S△CDE=
b2,S梯形ABDE=
(a+b)2,
∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,
S△ABC+S△CDE=
(a2+b2)≥ab(a=b時取等號),
∴S△ABC+S△CDE≥S△ACE;故本選項正確;
④過點M作MN垂直于BD,垂足為N.
![]()
∵點M是AE的中點,
則MN為梯形中位線,
∴N為中點,
∴△BMD為等腰三角形,
∴BM=DM;故本選項正確;
③又MN=
(AB+ED)=
(BC+CD),
∴∠BMD=90°,
即BM⊥DM;故本選項正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在15天內(nèi)完成,約定這批粽子的出廠價為每只6元,為按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足下列關(guān)系式:
![]()
![]()
(1)李明第幾天生產(chǎn)的粽子數(shù)量為420只?
(2)如圖,設(shè)第x天每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價-成本)
(3)設(shè)(2)小題中第m天利潤達到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多48元,則第(m+1)天每只粽子至少應(yīng)提價幾元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(1,y1)、B(2,y2)在直線y=2x+2上,y1與y2的大小關(guān)系是( )
A.y1>y2
B.y1<y2
C.y1=y2
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件標(biāo)價為600元的上衣,按8折銷售仍可獲利20元,設(shè)這件上衣的成本價為x元,根據(jù)題意,下面所列的方程正確的是(。
A. 600×0.8﹣x=20 B. 600×8﹣x=20 C. 600×0.8=x﹣20 D. 600×8=x﹣20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點C、A分別在x、y軸的正半軸上,一條拋物線經(jīng)過點A、C及點B(–3,0).
![]()
(1)求該拋物線的解析式;
(2)若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當(dāng)△APE的面積最大時,求點P的坐標(biāo);
(3)在第一象限內(nèi)的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,是必然事件的是( )
A. 拋擲一枚質(zhì)地均勻的硬幣,落地后正面朝上
B. 某人身高達到5.5米
C. 通常加熱到100°C時,水沸騰
D. 打開電視,正在播放綜藝節(jié)目《一站到底》
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com