【題目】(初步探究)
(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由.
(解決問題)
(2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點E、F,使得點F、E、P是一個等腰直角三角形的三個頂點,且PE=PF,∠FPE=90°.要求:僅用圓規作圖,保留作圖痕跡,不寫作法.
(拓展應用)
(3)如圖3,在平面直角坐標系xOy中,已知點A(2,0),點B(4,1),點C在第一象限內,若△ABC是等腰直角三角形,則點C的坐標是 .
(4)如圖4,在平面直角坐標系xOy中,已知點A(1,0),點C是y軸上的動點,線段CA繞著點C按逆時針方向旋轉90°至線段CB,CA=CB,連接BO、BA,則BO+BA的最小值是 .
![]()
【答案】(1)△AED是等腰直角三角形;(2)詳見解析;(3)(1,2)、(3,3)、(
,
);(4)![]()
【解析】
(1)證明△ABE≌△ECD (SAS),即可求解;
(2)如圖,以點D為圓心CP長為半徑作弧交AD于點F,以點C為圓心,DP長為半徑作弧交BE于點E,連接EF,EP,FP,點E、F即為所求;
(3)分∠CAB=90°、∠ABC=90°、∠ACB=90°,三種情況求解即可;
(4)求出B(m,1+m),則:BO+BA=
,BO+BA的值相當于求點P(m,m)到點M(1,-1)和點N(0,-1)的最小值,即可求解.
解:(1)△AED是等腰直角三角形,
證明:∵在△ABE和△ECD中,
,
∴△ABE≌△ECD (SAS)
∴AE=DE,∠AEB=∠EDC,
∵在Rt△EDC中,∠C=90°,
∴∠EDC+∠DEC=90°.
∴∠AEB+∠DEC=90°.
∵∠AEB+∠DEC+∠AED=180°,
∴∠AED=90°.
∴△AED是等腰直角三角形;
(2)如圖,以點D為圓心CP長為半徑作弧交AD于點F,以點C為圓心,DP長為半徑作弧交BE于點E,連接EF,EP,FP.
![]()
∴點E、F即為所求;
(3)如圖,當∠CAB=90°,CA=AB時,過點C作CF⊥AO于點F,過點B作BE⊥AO于點E,
![]()
∵點A(2,0),點B(4,1),
∴BE=1,OA=2,OE=4,∴AE=2,
∵∠CAB=90°,BE⊥AO,
∴∠CAF+∠BAE=90°,∠BAE+∠ABE=90°,
∴∠CAF=∠ABE,且AC=AB,∠AFC=∠AEB=90°,
∴△ACF≌△BAE(AAS)
∴CF=AE=2,AF=BE=1,
∴OF=OA﹣AF=1,
∴點C坐標為(1,2)
如圖,當∠ABC=90°,AB=BC時,過點B作BE⊥OA,過點C作CF⊥BE
![]()
∵∠ABC=90°,BE⊥OA,
∴∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,
∴∠BAE=∠CBF,且BC=AB,∠AEB=∠CFB=90°
∴△BCF≌△ABE(AAS)
∴BE=CF=1,AE=BF=2,∴EF=3
∴點C坐標為(3,3)
如圖,當∠ACB=90°,CA=BC時,過點C作CD⊥OA于點D,過點B作BF⊥CD于點F,
![]()
∵∠ACD+∠BCF=90°,∠ACD+∠CAD=90°,
∴∠BCF=∠CAD,且AC=BC,∠CDA=∠CFB,
∴△ACD≌△CBF(AAS)
∴CF=AD,BF=CD=DE,
∵AD+DE=AE=2
∴2=AD+CD=AD+CF+DF=2AD+1
∴DA=
,
∴CD=
,OD=
,
∴點C坐標(
,
)
綜上所述:點C坐標為:(1,2)、(3,3)、(
,
)
故答案為:(1,2)、(3,3)、(
,
)
(4)如圖作BH⊥OH于H.
![]()
設點C的坐標為(0,m),
由(1)知:OC=HB=m,OA=HC=1,
則點B(m,1+m),
則:BO+BA=
,
BO+BA的值,相當于求點P(m,m)到點M(1,﹣1)和點N(0,﹣1)的最小值,
相當于在直線y=x上尋找一點P(m,m),使得點P到M(0,﹣1),到N(1,﹣1)的距離和最小,
![]()
作M關于直線y=x的對稱點M′(﹣1,0),
易知PM+PN=PM′+PN≥NM′,
M′N=
,
故:BO+BA的最小值為
.
科目:初中數學 來源: 題型:
【題目】客運公司規定旅客可免費攜帶一定質量的行李,當行李質量超過規定時,需付的行李費y(元)是行李質量x(kg)的一次函數,且部分對應關系如表所示.
x(kg) | … | 30 | 40 | 50 | … |
y(元) | … | 4 | 6 | 8 | … |
(1)求y關于x的函數表達式;
(2)求旅客最多可免費攜帶行李的質量;
(3)當行李費2≤y≤7(元)時,可攜帶行李的質量x(kg)的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
我們知道,四邊形具有不穩定性,容易變形,如圖1,一個矩形發生變形后成為一個平行四邊形,設這個平行四邊形相鄰兩個內角中較小的一個內角為α,我們把
的值叫做這個平行四邊形的變形度.
(1)若矩形發生變形后的平行四邊形有一個內角是120度,則這個平行四邊形的變形是 .
猜想證明:
(2)設矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2,
之間的數量關系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點,且AB2=AEAD,這個矩形發生變形后為平行四邊形A1B1C1D1,E1為E的對應點,連接B1E1,B1D1,若矩形ABCD的面積為4
(m>0),平行四邊形A1B1C1D1的面積為2
(m>0),試求∠A1E1B1+∠A1D1B1的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標為(
,
m),則不等式組mx﹣2<kx+1<mx的解集為( )
A. x>
B.
<x<
C. x<
D. 0<x<![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA 交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若
,求證:CD=DH.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com