【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉,得到△ADE,旋轉角為α(0°<α<180°),點B的對應點為點D,點C的對應點為點E,連接BD,BE.
(1)如圖,當α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
![]()
【答案】(1)①②詳見解析;③3
﹣4;(2)13.
【解析】試題分析:(1)①由旋轉性質知AB=AD,∠BAD=60°即可得證;②由BA=BD、EA=ED根據中垂線性質即可得證;③分別求出BF、EF的長即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根據三線合一可得CE⊥AB、AC=5、AH=3,繼而知CE=2CH=8、BE=5,即可得答案.
試題解析:(1)①∵△ABC繞點A順時針方向旋轉60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等邊三角形;
②由①得△ABD是等邊三角形,
∴AB=BD,
∵△ABC繞點A順時針方向旋轉60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴點B、E在AD的中垂線上,
∴BE是AD的中垂線,
∵點F在BE的延長線上,
∴BF⊥AD, AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等邊三角形ABD中,BF=ABsin∠BAF=6×
=3
,
∴BE=BF﹣EF=3
﹣4;
(2)如圖所示,
![]()
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=
CE,
∵AC=BC,
∴AH=BH=
AB=3,
則CE=2CH=8,BE=5,
∴BE+CE=13.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點P為第三象限內拋物線上的一點,設△PAC的面積為S,求S的最大值;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】棗莊樂園設置了一個秋千場所,如圖所,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計算結果精確到0.1m)
(1)當擺繩OA與OB成45°夾角時,恰為兒童的安全高度,求h的長;
(2)某成人在玩秋千時,擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數據:
≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為
米,斜坡BC的坡度i=1:
.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線段OA上的動點,從點O出發(fā),以1cm/s的速度沿OA方向作勻速運動,點Q在線段AB上.已知A,Q兩點間的距離是O,F兩點間距離的a倍.若用(a,t)表示經過時間t(s)時,△OCF,△FAQ,△CBQ中有兩個三角形全等.請寫出(a,t)的所有可能情況 . ![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com