【題目】△ABC中,AB=13cm,AC=15cm,高AD=12,則BC的長為( )
A.14
B.4
C.14或4
D.以上都不對
【答案】C
【解析】解:(1)如圖,銳角△ABC中,AB=13,AC=15,BC邊上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得
BD2=AB2﹣AD2=132﹣122=25,
則BD=5,
在Rt△ABD中AC=15,AD=12,由勾股定理得
CD2=AC2﹣AD2=152﹣122=81,
則CD=9,
故BC=BD+DC=9+5=14;
2)鈍角△ABC中,AB=13,AC=15,BC邊上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得
BD2=AB2﹣AD2=132﹣122=25,
則BD=5,
在Rt△ACD中AC=15,AD=12,由勾股定理得
CD2=AC2﹣AD2=152﹣122=81,
則CD=9,
故BC的長為DC﹣BD=9﹣5=4.
故選:C.![]()
![]()
【考點精析】本題主要考查了勾股定理的概念的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
![]()
(1)判斷直線l與⊙O的位置關系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com