【題目】現對某市工薪階層關于“樓市限購令”的態度進行調查,隨機抽調了50人,他們月收入的頻數分布及對“樓市限購令”贊成人數如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統計數據填下面2×2列聯表并問是否有99%的把握認為“月收入以5500為分界點”對“樓市限購令”的態度有差異;
月收入低于55百元的人數 | 月收入不低于55百元的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調查人中共隨機抽取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求收到“紅包”獎勵的3人中至少有1人收入在[15,25)的概率.
參考公式:K2
,其中n=a+b+c+d.
參考數據:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)填表見解析,沒有 (Ⅱ)![]()
【解析】
(Ⅰ)由題意填表,計算K2,對照臨界值得出結論 (Ⅱ)由分層抽樣求出抽取的人數,列舉法寫出基本事件,計算概率即可.
(Ⅰ)由題意填2×2列聯表如下,
月收入低于55百元的人數 | 月收入不低于55百元的人數 | 合計 | |
贊成 | 29 | 3 | 32 |
不贊成 | 11 | 7 | 18 |
合計 | 40 | 10 | 50 |
由表中數據,計算K2
6.27<6.635,
所以沒有99%的把握認為“月收入以5500為分界點”對“樓市限購令”的態度有差異;
(Ⅱ)用分層抽樣在月收入在[15,25),[25,35)的被調查人中隨機抽取6人,則月收入在[15,25)內有6
2(人)記為AB,在[25,35)有6﹣2=4(人),記為cdef;
從這6人中抽取3人,基本事件是ABcABdABeABfAcdAceAcfAdeAdfAefBcdBceBcfBdeBdfBefcdecdfcefdef共20種,
這3人中至少收入在[15,25)的事件是ABcABdABeABfAcdAceAcfAdeAdfAefBcdBceBcfBdeBdfBef共16種,
故所求的概率值為P
.
科目:高中數學 來源: 題型:
【題目】已知無窮數列
,
,
滿足:對任意的
,都有
=
,
=
,
=
.記
=
(
表示
個實數
,
,
中的最大值).
(1)若
=
,
=
,
=
,求
,
,
的值;
(2)若
=,
=
,求滿足
=
的
的所有值;
(3)設
,
,
是非零整數,且
,
,
互不相等,證明:存在正整數
,使得數列
,
,
中有且只有一個數列自第
項起各項均為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C1的極坐標方程為ρ=4cosθ,直線C2的參數方程為
(t為參數).
(1)求曲線C1的直角坐標方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點,求|PA||PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區的水稻,具有抗旱抗澇、抗病蟲害、抗倒伏抗鹽堿等特點.近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農業科學研究所分別抽取了試驗田中的海水稻以及對照田中的普通水稻各
株,測量了它們的根系深度(單位:
),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數,兩邊分別是海水稻和普通水稻根系深度的個位數,則下列結論中不正確的是( )
![]()
A.海水稻根系深度的中位數是![]()
B.普通水稻根系深度的眾數是![]()
C.海水稻根系深度的平均數大于普通水稻根系深度的平均數
D.普通水稻根系深度的方差小于海水稻根系深度的方差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應國家號召,打贏脫貧致富攻堅戰,武漢大學團隊帶領湖北省大悟縣新城鎮熊灣村村民建立有機、健康、高端、綠色的蔬菜基地,并策劃“生產、運輸、銷售”一體化的直銷供應模式,據統計,當地村民兩年時間成功脫貧.蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市,每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:
,且
).若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,若購進17份比購進18份的利潤的期望值大,則x的最小值是________.
前8小時內銷售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 16 | 15 | 13 | y |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
的圖象是自原點出發的一條折線,當
(
)時,該圖象是斜率為
的線段,其中常數
且
,數列
由
(
)定義.
(1)若
,求
,
;
(2)求
的表達式及
的解析式(不必求
的定義域);
(3)當
時,求
的定義域,并證明
的圖象與
的圖象沒有橫坐標大于1的公共點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n(1≤n≤30、n
N*)的函數關系如下圖所示,其中函數f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標為m,且第m天日銷售量最大.
(Ⅰ)求f(n) 的表達式,及前m天的銷售總數;
(Ⅱ)按以往經驗,當該專賣店銷售某款服裝的總數超過 400 件時,市面上會流行該款服裝,而日銷售量連續下降并低于 30 件時,該款服裝將不再流行.試預測本款服裝在市面上流行的天數是否會超過 10 天?請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合
是滿足下列性質的函數
的全體:存在實數
、
,對于定義域內任意
,均有
成立,稱數對
為函數
的“伴隨數對”.
(1)判斷函數
是否屬于集合
,并說明理由;
(2)若函數
,求滿足條件的函數
的所有“伴隨數對”;
(3)若
、
都是函數
的“伴隨數對”,當
時,
,當
時,
,求當
時,函數
的解析式和零點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com