如圖,在△
中,
,
,點
在
上,
交
于
,
交
于
.沿
將△
翻折成△
,使平面
平面
;沿
將△
翻折成△
,使平面
平面
.![]()
(Ⅰ)求證:
平面
.
(Ⅱ)設(shè)
,當(dāng)
為何值時,二面角
的大小為
?
(1)要證明線面平行,則可以根據(jù)
來得到證明。
(2)![]()
解析試題分析:解:(Ⅰ)因為
,
平面
,所以
平面
. …2分
因為平面
平面
,且
,所以
平面
.
同理,
平面
,所以
,從而
平面
. …4分
所以平面
平面
,從而
平面
. …6分
(Ⅱ)以C為原點,
所在直線為
軸,
所在直線為
軸,過C且垂直于平面
的直線為
軸,建立空間直角坐標(biāo)系,如圖. …7分![]()
則
,
,
,
.
,
,
.
平面
的一個法向量
, …9分
平面
的一個法向量
. …11分
由
, …13分
化簡得
,解得
. …15分
考點:線面平行和二面角的求解
點評:解決的關(guān)鍵是利用空間向量法來得到空間中的二面角的表示,以及結(jié)合判定定理得到線面的垂直的證明。屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=
,AB=2CD=8.![]()
(1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE =
,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。![]()
(1)求證:MN⊥EA;
(2)求四棱錐M – ADNP的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐
中,
平面ABCD,底面ABCD是菱形,
,
.![]()
(1)求證:
平面PAC;
(2)若
,求PB與AC所成角的余弦值;
(3)若PA=
,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.![]()
(1)求證:
平面EFGH;
(2)求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。![]()
![]()
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當(dāng)點E在何位置時,BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖:直三棱柱ABC—
中,![]()
,
,D為AB中點。![]()
(1)求證:
;
(2)求證:
∥平面
;
(3)求C1到平面A1CD的距離。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com