【題目】設全集為R,集合A={x|
≥0},B={x|﹣2≤x<0},則(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
科目:高中數學 來源: 題型:
【題目】甲乙兩人同時生產內徑為
的一種零件,為了對兩人的生產質量進行評比,從他們生產的零件中各抽出 5 件(單位:
) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產的零件內徑的尺寸看、誰生產的零件質量較高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形,平面
平面
,
,
,
,
為
中點.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在點
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一動點
,
到點
的距離減去它到
軸距離的差都是
.
(
)求動點
的軌跡方程.
(
)設動點
的軌跡為
,已知定點
、
,直線
、
與軌跡
的另一個交點分別為
、
.
(i)點
能否為線段
的中點,若能,求出直線
的方程,若不能,說明理由.
(ii)求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓
的左、右焦點為
,右頂點為
,上頂點為
,若
,
與
軸垂直,且
.
(1)求橢圓方程;
(2)過點
且不垂直于坐標軸的直線與橢圓交于
兩點,已知點
,當
時,求滿足
的直線
的斜率
的取值范圍.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓
的離心率是
,過點
的動直線
與橢圓相交于
兩點,當直線
與
軸平行時,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)在
軸上是否存在異于點
的定點
,使得直線
變化時,總有
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統(tǒng)計表明,家庭的月理財投入
(單位:千元)與月收入
(單位:千元)之間具有線性相關關系.某銀行隨機抽取5個家庭,獲得第
(
)個家庭的月理財投入
與月收入
的數據資料,經計算得
.
(1)求
關于
的回歸方程
;
(2)判斷
與
之間是正相關還是負相關;
(3)若某家庭月理財投入為5千元,預測該家庭的月收入.
附:回歸方程的斜率與截距的最小二乘估計公式分別為:
,其中
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2分別為橢圓C:
+
=1(a>b>0)的左、右兩個焦點,橢圓上點M(
,
)到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com