【題目】如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆. ![]()
(1)若圍墻AP、AQ總長度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長為
米,AP段圍墻高1米,AQ段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.
【答案】
(1)解:設(shè)AP=x(米),則AQ=200﹣x,
所以
(米2)
當(dāng)且僅當(dāng)x=200﹣x時(shí),取等號.
即AP=AQ=100(米),
(米2)
(2)解:由正弦定理
,得AP=100sin∠AQP,AQ=100sin∠APQ
故圍墻總造價(jià) ![]()
因?yàn)锳P≥AQ,所以
,∴
,
所以y∈
.
答:圍墻總造價(jià)的取值范圍為
(元)
【解析】(1)設(shè)AP=x(米),則AQ=200﹣x,得
(米2)即可(2)由正弦定理
,得AP=100sin∠AQP,AQ=100sin∠APQ故圍墻總造價(jià)
,由
,
,得y∈
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的焦點(diǎn)為F1 , F2 , 離心率為
,點(diǎn)P為其上動(dòng)點(diǎn),且三角形PF1F2的面積最大值為
,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)M,N為C上的兩個(gè)動(dòng)點(diǎn),求常數(shù)m,使
=m時(shí),點(diǎn)O到直線MN的距離為定值,求這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,離心率
,它的長軸長等于圓x2+y2﹣2x+4y﹣3=0的直徑.
(1)求橢圓 C的方程;
(2)若過點(diǎn)
的直線l交橢圓C于A,B兩點(diǎn),是否存在定點(diǎn)Q,使得以AB為直徑的圓經(jīng)過這個(gè)定點(diǎn),若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+
=0,直線l的參數(shù)方程為
(t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω>0,函數(shù)y=2cos(ωx+
)﹣1的圖象向右平移
個(gè)單位后與原圖象重合,則ω的最小值是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體積為
的球有一個(gè)內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣
cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( )
A.(
,
]
B.(
,
]
C.(
,
]
D.(
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在直角坐標(biāo)系xOy中,曲線C1:
(t為參數(shù),且t≠0),其中0![]()
![]()
, 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2::
=2sin
, C3:
=2
cos![]()
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com