已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
(1)
(2)![]()
解析試題分析:解:(1)![]()
,
,![]()
![]()
,
,![]()
![]()
(2)設(shè)直線BD的方程為![]()
![]()
![]()
![]()
![]()
![]()
----①
-----②
,
設(shè)
為點(diǎn)
到直線BD:
的距離, ![]()
![]()
![]()
,當(dāng)且僅當(dāng)
時(shí)取等號(hào).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d1/3/kutyf2.png" style="vertical-align:middle;" />
,所以當(dāng)
時(shí),
的面積最大,最大值為
考點(diǎn):橢圓的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問(wèn)一般是求出曲線的方程,第二問(wèn)常與直線結(jié)合起來(lái),當(dāng)涉及到最值時(shí),常用到基本不等式。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
的焦點(diǎn)在拋物線
上.![]()
(Ⅰ)求拋物線
的方程及其準(zhǔn)線方程;
(Ⅱ)過(guò)拋物線
上的動(dòng)點(diǎn)
作拋物線
的兩條切線
、
, 切點(diǎn)為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
:
的右焦點(diǎn)為
且
為常數(shù),離心率為
,過(guò)焦點(diǎn)
、傾斜角為
的直線
交橢圓
與M,N兩點(diǎn),
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)當(dāng)
=
時(shí),
=
,求實(shí)數(shù)
的值;
(3)試問(wèn)
的值是否與直線
的傾斜角
的大小無(wú)關(guān),并證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,其左、右焦點(diǎn)分別為
、
,短軸長(zhǎng)為
,點(diǎn)
在橢圓
上,且滿(mǎn)足
的周長(zhǎng)為6.
(Ⅰ)求橢圓
的方程;;
(Ⅱ)設(shè)過(guò)點(diǎn)
的直線與橢圓相交于A、B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M使
恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)圓
的極坐標(biāo)方程為
,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為
軸正半軸,兩坐標(biāo)系長(zhǎng)度單位一致,建立平面直角坐標(biāo)系.過(guò)圓
上的一點(diǎn)
作平行于
軸的直線
,設(shè)
與
軸交于點(diǎn)
,向量
.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)點(diǎn)
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
,![]()
(1)化
的方程為普通方程,并說(shuō)明它們分別表示什么曲線?
(2)若
上的點(diǎn)P對(duì)應(yīng)的參數(shù)為
,Q為
上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線
的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
的離心率為
,且經(jīng)過(guò)點(diǎn)
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于
,
兩點(diǎn),連接MA,MB并延長(zhǎng)交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且
.求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
過(guò)點(diǎn)
,其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.直線
與
軸正半軸和
軸分別交于點(diǎn)
、
,與橢圓分別交于點(diǎn)
、
,各點(diǎn)均不重合且滿(mǎn)足![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
,試證明:直線
過(guò)定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
,直線
交橢圓于不同的兩點(diǎn)
。
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com