,
,
為常數(shù),離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:![]()
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數(shù))上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內(nèi),求實數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
第二問中,
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數(shù)的關(guān)系得到即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
(Ⅱ)設(shè)
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
科目:高中數(shù)學 來源: 題型:
| OH |
| 3 |
| HB |
| A1F |
| FC |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 2 |
| 3 |
| 8 |
| 3 |
| 1 |
| 4 |
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 5 |
2
| ||
| 5 |
| 1 |
| |AB| |
| λ |
| |CD| |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆湖北武漢部分重點中學高二下學期期中考試文數(shù)學試卷(解析版) 題型:解答題
橢圓
:
的右焦點為
且
為常數(shù),離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓
的標準方程;
(2)當
=
時,
=
,求實數(shù)
的值;
(3)試問
的值是否與直線
的傾斜角
的大小無關(guān),并證明你的結(jié)論
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com