(14分) 已知函數(shù)
.
(1)當
時,求曲線
在點
處的切線方程;
(2)當
時,判斷方程
實根個數(shù).
(3)若
時,不等式
恒成立,求實數(shù)
的取值范圍.
(1)
;(2)在
內(nèi)
有且僅有一個實數(shù)根
(3)![]()
【解析】
試題分析:(1)利用導數(shù)的幾何意義得到導數(shù)的值,切點坐標得到結(jié)論。
(2)
時,令
,
求解導數(shù),并判定又
,
![]()
在
內(nèi)有且僅有一個零點進而得到結(jié)論。
(3)
恒成立,
即
恒成立,
又
,則當
時,
恒成立,
分離參數(shù)法構(gòu)造新函數(shù)利用求解的最小值得到參數(shù)m的范圍。
(1)
時,
,
,切點坐標為
,
切線方程為![]()
(2)
時,令
,
,
在
上為增函數(shù)
又
,
![]()
在
內(nèi)有且僅有一個零點
在
內(nèi)
有且僅有一個實數(shù)根
(或說明
也可以)
(3)
恒成立,
即
恒成立,
又
,則當
時,
恒成立,
令
,只需
小于
的最小值,
,
,
,
當
時
,
在
上單調(diào)遞減,
在
的最小值為
,
則
的取值范圍是![]()
考點:本題主要是考查導數(shù)在研究函數(shù)中的運用,求解最值和導數(shù)幾何意義的綜合運用。
點評:解決該試題的關(guān)鍵是能將不等式的恒成立問題轉(zhuǎn)化為哈雙女戶的最值來處理,并得到參數(shù)的范圍,同時要理解導數(shù)的幾何意義表示的為切線的斜率。
科目:高中數(shù)學 來源:2011屆廣東省高三高考全真模擬試卷數(shù)學理卷一 題型:解答題
(本小題滿分14分)
已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(1)求函數(shù)
的最小值;
(2)若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆北京市西城區(qū)高三二?荚嚴砜茢(shù)學 題型:解答題
((本小題滿分14分)
已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)當
時,求曲線
在
處的切線與坐標軸圍成的面積;
(Ⅱ)若函數(shù)
存在一個極大值點和一個極小值點,且極大值與極小值的積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省漳州市四地七校高三第四次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數(shù)
同時滿足如下三個條件:①定義域為
;②
是偶函數(shù);③
時,
,其中
.
(Ⅰ)求
在
上的解析式,并求出函數(shù)
的最大值;
(Ⅱ)當
,
時,函數(shù)
,若
的圖象恒在直線
上方,求實數(shù)
的取值范圍(其中
為自然對數(shù)的底數(shù),
).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年福建省高三模擬考試數(shù)學(理科)試題 題型:解答題
(本小題滿分14分)
已知函數(shù)
.
(Ⅰ)若
為
的極值點,求實數(shù)
的值;
(Ⅱ)若
在
上為增函數(shù),求實數(shù)
的取值范圍;
(Ⅲ)若
時,方程
有實根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省高二期末測試數(shù)學(理) 題型:解答題
(本題滿分14分)已知函數(shù)
(
,實數(shù)
,
為常數(shù)).
(Ⅰ)若
,求函數(shù)
的極值;
(Ⅱ)若
,討論函數(shù)
的單調(diào)性.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com