極坐標(biāo)系中橢圓C的方程為![]()
以極點(diǎn)為原點(diǎn),極軸為
軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為
,求
的取值范圍;
(Ⅱ)若橢圓的兩條弦
交于點(diǎn)
,且直線
與
的傾斜角互補(bǔ),
求證:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,點(diǎn)
到兩點(diǎn)
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn).
(1)寫出
的方程;
(2)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的左、右焦點(diǎn)分別為
和
,且橢圓過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
作不與
軸垂直的直線
交該橢圓于
兩點(diǎn),
為橢圓的左頂點(diǎn),試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄AC經(jīng)過點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長(zhǎng)的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個(gè)公共點(diǎn),使它們?cè)谠擖c(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,曲線
與曲線
相交于
、
、
、
四個(gè)點(diǎn).
⑴ 求
的取值范圍;
⑵ 求四邊形
的面積的最大值及此時(shí)對(duì)角線
與
的交點(diǎn)坐標(biāo).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,經(jīng)過點(diǎn)
的動(dòng)直線
,與橢圓
:
(
)相交于
,
兩點(diǎn). 當(dāng)
軸時(shí),
,當(dāng)
軸時(shí),
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
的中點(diǎn)為
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱.![]()
(Ⅰ)若點(diǎn)
的坐標(biāo)為
,求
的值;
(Ⅱ)若橢圓
上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的離心率
,
是其左右焦點(diǎn),點(diǎn)
是直線
(其中
)上一點(diǎn),且直線
的傾斜角為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
是橢圓
上兩點(diǎn),滿足
,求
(
為坐標(biāo)原點(diǎn))面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若以
為直徑的圓經(jīng)過原點(diǎn)
,求直線
的方程;
(2)若線段
的中垂線交
軸于點(diǎn)
,求
面積的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com