【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點(diǎn),求△ABM面積的最小值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合
,
是集合
的所有子集組成的集合.若集合
滿足對任意的映射
,總存在
,使得
成立,其中,
表示集合
的子集
的補(bǔ)集,
為給定的正整數(shù).試求所有滿足上述條件的集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族
中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)
中
(
)的成員自駕時(shí),自駕群體的人均通勤時(shí)間為
(單位:分鐘),而公交群體的人均通勤時(shí)間不受
影響,恒為
分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)
在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族
的人均通勤時(shí)間
的表達(dá)式;討論
的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進(jìn)口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進(jìn)博會高點(diǎn)紛呈.一個(gè)更加開放和自信的中國,正用實(shí)際行動為世界構(gòu)筑共同發(fā)展平臺,展現(xiàn)推動全球貿(mào)易與合作的中國方案.
某跨國公司帶來了高端智能家居產(chǎn)品參展,供購商洽談采購,并決定大量投放中國市場.已知該產(chǎn)品年固定研發(fā)成本30萬美元,每生產(chǎn)一臺需另投入90美元.設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品
萬臺且全部售完,每萬臺的銷售收入為
萬美元,![]()
(1)寫出年利潤
(萬美元)關(guān)于年產(chǎn)量
(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當(dāng)年產(chǎn)量為多少萬臺時(shí),該公司獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
分別為橢圓
:
的左右焦點(diǎn),已知橢圓
上的點(diǎn)
到焦點(diǎn)
,
的距離之和為4.
(1)求橢圓
的方程;
(2)過點(diǎn)
作直線交橢圓
于
,
兩點(diǎn),線段
的中點(diǎn)為
,連結(jié)
并延長交橢圓于點(diǎn)
(
為坐標(biāo)原點(diǎn)),若
,
,
等比數(shù)列,求線段
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(
,且
),
,(其中
為
的導(dǎo)函數(shù)).
(1)當(dāng)
時(shí),求
的極大值點(diǎn);
(2)討論
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4,極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系
中,
為坐標(biāo)原點(diǎn),曲線
(
為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和直線
的直角坐標(biāo)方程;
(2)直線
與
軸的交點(diǎn)
,經(jīng)過點(diǎn)
的直線
與曲線
交于
兩點(diǎn),若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞減區(qū)間;
(2)當(dāng)
時(shí),設(shè)函數(shù)
.若存在區(qū)間
,使得函數(shù)
在
上的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與橢圓
有共同焦點(diǎn)且過點(diǎn)
的雙曲線的標(biāo)準(zhǔn)方程;
(2)已知拋物線的焦點(diǎn)在
軸上,拋物線上的點(diǎn)
到焦點(diǎn)的距離等于5,求拋物線的標(biāo)準(zhǔn)方程和
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com