【題目】如圖為某班35名學生的投籃成績(每人投一次)的條形統計圖,其中上面部分數據破損導致數據不完全。已知該班學生投籃成績的中位數是5,則根據統計圖,則下列說法錯誤的是( )
![]()
A. 3球以下(含3球)的人數為10
B. 4球以下(含4球)的人數為17
C. 5球以下(含5球)的人數無法確定
D. 5球的人數和6球的人數一樣多
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓
的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
【答案】(1)
;
.
(2)
.
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得
兩點的坐標, 設點
,代入向量
,利用三角函數的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓
的參數方程為
(
為參數).
直線
的直角坐標方程為
.
(Ⅱ)由直線
的方程
可得點
,點
.
設點
,則
.
.
由(Ⅰ)知
,則
.
因為
,所以
.
【題型】解答題
【結束】
23
【題目】選修4-5:不等式選講
已知函數
,
.
(Ⅰ)若對于任意
,
都滿足
,求
的值;
(Ⅱ)若存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
是定義在
上的奇函數,且
,對任意的![]()
且
時,有
成立.
(1)判斷
在
上的單調性,并用定義證明;
(2)解不等式
;
(3)若
對任意的
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C:
=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F為拋物線C:y2=4x的焦點,過點P(﹣1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在
上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的一個上界.已知函數
,
.
(1)若函數
為奇函數,求實數
的值;
(2)在(1)的條件下,求函數
在區間
上的所有上界構成的集合;
(3)若函數
在
上是以5為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com