【題目】將函數(shù)y=sinx的圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
倍(縱坐標(biāo)不變),再將得到的圖象向左平移
個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為 .
【答案】y=sin(2x+
)
【解析】解:將函數(shù)y=sinx的圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
倍(縱坐標(biāo)不變),可得y=sin2x的圖象; 再將得到的圖象向左平移
個(gè)單位長(zhǎng)度,可得y=sin2(x+
)=sin(2x+
)的圖象,
所以答案是:y=sin(2x+
).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握?qǐng)D象上所有點(diǎn)向左(右)平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市的教育主管部門(mén)對(duì)所管轄的學(xué)校進(jìn)行年終督導(dǎo)評(píng)估,為了解某學(xué)校師生對(duì)學(xué)校教學(xué)管理的滿(mǎn)意度,分別從教師和不同年級(jí)的同學(xué)中隨機(jī)抽取若干師生,進(jìn)行評(píng)分(滿(mǎn)分100分),繪制如下頻率分布直方圖(分組區(qū)間為
,
,
,
,
,
),并將分?jǐn)?shù)從低到高分為四個(gè)等級(jí):
滿(mǎn)意度評(píng)分 |
|
|
|
|
滿(mǎn)意度等級(jí) | 不滿(mǎn)意 | 基本滿(mǎn)意 | 滿(mǎn)意 | 非常滿(mǎn)意 |
已知滿(mǎn)意度等級(jí)為基本滿(mǎn)意的有340人.
![]()
(1)求表中
的值及不滿(mǎn)意的人數(shù);
(2)在等級(jí)為不滿(mǎn)意的師生中,老師占
,現(xiàn)從該等級(jí)師生中按分層抽樣抽取12人了解不滿(mǎn)意的原因,并從中抽取3人擔(dān)任整改督導(dǎo)員,記
為老師整改督導(dǎo)員的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)為了對(duì)新研究的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)x元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷(xiāo)售y件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線(xiàn)方程
,其中
=﹣20.
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠(chǎng)獲得最大利潤(rùn),該產(chǎn)品的單價(jià)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[x]表示不超過(guò)x的最大整數(shù),例如:[π]=3. S1=[
]+[
]+[
]=3
S2=[
]+[
]+[
]+[
]+[
]=10
S3=[
]+[
]+[
]+[
]+[
]+[
]+
]=21,
…,
依此規(guī)律,那么S10=( )
A.210
B.230
C.220
D.240
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿(mǎn)足條件:f(x﹣1)=f(3﹣x),且方程f(x)=2x有兩等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ![]()
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若
,求cos2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
為常數(shù)),其圖像是曲線(xiàn)
.
(1)設(shè)函數(shù)
的導(dǎo)函數(shù)為
,若存在三個(gè)實(shí)數(shù)
,使得
與
同時(shí)成立,求實(shí)數(shù)
的取值范圍;
(2)已知點(diǎn)
為曲線(xiàn)
上的動(dòng)點(diǎn),在點(diǎn)
處作曲線(xiàn)
的切線(xiàn)
與曲線(xiàn)
交于另一點(diǎn)
,在點(diǎn)
處作曲線(xiàn)
的切線(xiàn)
,設(shè)切線(xiàn)
的斜率分別為
,問(wèn):是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫(xiě)出m,n的值,若該“微信運(yùn)動(dòng)”團(tuán)隊(duì)共有120人,請(qǐng)估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1,
,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2,
,試分別比較v1與v2,
與
的大。唬ㄖ恍鑼(xiě)出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的步數(shù)數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值大于3000步的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com