已知四棱錐P-ABCD,底面ABCD為矩形,側(cè)棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N為側(cè)棱PC上的兩個(gè)三等分點(diǎn)![]()
(1)求證:AN∥平面 MBD;
(2)求異面直線AN與PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
(1)證明見(jiàn)解析;(2)
;(3)
.
解析試題分析:
解題思路:(1)構(gòu)造三角形的中位線,出現(xiàn)線線平行,利用線面平行的判定即得線面平行;(2)建立空間直角坐標(biāo)系,利用空間向量求異面直線所成角的余弦值;(3)建立空間直角坐標(biāo)系,利用空間向量求二面角的余弦值.
規(guī)律總結(jié):對(duì)于空間幾何體中的垂直、平行關(guān)系的判定,要牢牢記住有關(guān)判定定理與性質(zhì)定理并靈活進(jìn)行轉(zhuǎn)化,線線關(guān)系是關(guān)鍵;涉及夾角、距離的求解問(wèn)題以及開(kāi)放性問(wèn)題,要注意恰當(dāng)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解.
試題解析:(1)證明:連結(jié)AC交BD于O,連結(jié)OM,
∵底面ABCD為矩形,∴O為AC中點(diǎn),
∵M(jìn)、N為側(cè)棱PC的三等分點(diǎn),∴CM=MN,
∴OM∥AN, ∵
平面MBD,AN
平面MBD
∴AN∥平面MBD
(2)如圖所示,以A為原點(diǎn),建立空間直角坐標(biāo)系A(chǔ)-xyz,
則A(0,0,0),B(3,0,0), C(3,6,0),D(0,6,0)
P(0,0,3),M(2,4,1),N(1,2,2)
∵
∴異面直線AN與PD所成的角的余弦值為
(3)∵側(cè)棱PA⊥底面ABCD
∴平面BCD的一個(gè)法向量為![]()
設(shè)平面MBD的法向量為![]()
并且![]()
,令y=1,得x=2,z=-2
∴平面MBD的一個(gè)法向量為
![]()
由圖知二面角
是銳角
∴二面角
的余弦值為
.
考點(diǎn):1.線面平行的判定定理;2.空間向量的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面
是
且邊長(zhǎng)為
的菱形,側(cè)面
是等邊三角形,且平面
⊥底面
.![]()
(1)若
為
的中點(diǎn),求證:
平面
;
(2)求證:
;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知
的直徑AB=3,點(diǎn)C為
上異于A,B的一點(diǎn),
平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:
平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
.![]()
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求直線PA與平面PBC所成角的正弦值;
(3)在線段PC上是否存在一點(diǎn)Q(除去端點(diǎn)),使得平面QAD與平面PBC所成銳二面角的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
下列說(shuō)法中正確的有 (將正確說(shuō)法的序號(hào)填入空格中)
①三條直線交于一點(diǎn),過(guò)這三條直線的平面有且只有一個(gè)
②過(guò)一點(diǎn)有且只有一條直線與已知直線垂直
③分別和兩條異面直線AB、CD同時(shí)相交的兩條直線AC、BD一定是異面直線
④如圖點(diǎn)P在面ABC內(nèi)的射影為O,且PA
BC,PC
AB,則點(diǎn)O為△ABC的垂心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
矩形
與矩形
所在的平面互相垂直,將
沿
翻折,翻折后的點(diǎn)E恰與BC上的點(diǎn)P重合.設(shè)
,則當(dāng)
時(shí),
有最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE∶EC=AF∶FD=1∶2,EF=
,求AB和CD所成角的余弦值.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com