【題目】已知關(guān)于x的不等ax2﹣3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解關(guān)于x的不等式:ax2﹣(ac+b)x+bx<0.
【答案】解:(Ⅰ)∵不等式ax2﹣3x+2>0的解集是{x|x<1或x>b},
∴方程ax2﹣3x+2=0的實(shí)數(shù)根是1和b,
由根與系數(shù)的關(guān)系,得;![]()
解得a=1,b=2;
(Ⅱ)∵a=1,b=2;
∴不等式ax2﹣(ac+b)x+bx<0化為
x2﹣(c+2)x+2x<0,
即x(x﹣c)<0;
∴當(dāng)c>0時(shí),解得0<x<c,
當(dāng)c=0時(shí),不等式無解,
當(dāng)c<0時(shí),解得c<x<0;
綜上,當(dāng)c>0時(shí),不等式的解集是(0,c),
當(dāng)c=0時(shí),不等式的解集是,
當(dāng)c<0時(shí),不等式的解集是(c,0).
【解析】(Ⅰ)根據(jù)不等式ax2﹣3x+2>0的解集,得出方程ax2﹣3x+2=0的實(shí)數(shù)根,由根與系數(shù)的關(guān)系,求出a、b的值;(Ⅱ)由a、b的值,化簡(jiǎn)不等式ax2﹣(ac+b)x+bx<0,討論c的值,求出不等式的解集即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元二次不等式(求一元二次不等式![]()
解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)
中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為:
,曲線
的極坐標(biāo)方程: ![]()
(1)寫出
和
的普通方程;
(2)若
與
交于兩點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
有三個(gè)極值點(diǎn)
,求
的取值范圍;
(2)若
對(duì)任意
都恒成立的
的最大值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)中,曲線
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程.
(Ⅱ)求曲線
上的點(diǎn)到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
+log2017(2﹣x)的定義域?yàn)椋?/span> )
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
,
,則下列說法正確的是( )
A. 把
上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線![]()
B. 把
上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線![]()
C. 把曲線
向右平移
個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線![]()
D. 把曲線
向右平移
個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
=(cosθ,sinθ),
=(﹣
,
);
(1)若
∥
,且θ∈(0,π),求θ;
(2)若|3
+
|=|
﹣3
|,求|
+
|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1=
Sn(n=1,2,3,…).
(1)證明:數(shù)列{
}是等比數(shù)列;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com