【題目】在直角坐標系
中,曲線
的參數方程為
(
為參數,
),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線
的普通方程和曲線
的直角坐標方程;
(2)已知點
是曲線
上一點,若點
到曲線
的最小距離為
,求
的值.
科目:高中數學 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數,按十位數字為莖,個位數字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數據的平均數都為10.
![]()
(1)求
的值;
(2)分別求出甲、乙兩組數據的方差
和
,并由此分析兩組技工的加工水平;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學的發展推動著科技的進步,正是基于線性代數、群論等數學知識的極化碼原理的應用,華為的5G技術領先世界.目前某區域市場中5G智能終端產品的制造由H公司及G公司提供技術支持據市場調研預測,5C商用初期,該區域市場中采用H公司與G公司技術的智能終端產品分別占比
及
假設兩家公司的技術更新周期一致,且隨著技術優勢的體現每次技術更新后,上一周期采用G公司技術的產品中有20%轉而采用H公司技術,采用H公司技術的僅有5%轉而采用G公司技術設第n次技術更新后,該區域市場中采用H公司與G公司技術的智能終端產品占比分別為
及
,不考慮其它因素的影響.
(1)用
表示
,并求實數
使
是等比數列;
(2)經過若干次技術更新后該區域市場采用H公司技術的智能終端產品占比能否達到75%以上?若能,至少需要經過幾次技術更新;若不能,說明理由?(參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據莖葉圖能得到的正確結論的編號為( )![]()
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com