【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系(
),點(diǎn)
為曲線
上的動(dòng)點(diǎn),點(diǎn)
在線段
的延長線上,且滿足
,點(diǎn)
的軌跡為
。
(Ⅰ)求
的極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)
的極坐標(biāo)為
,求
面積的最小值。
【答案】(Ⅰ)
:
;
:
(Ⅱ)2
【解析】
(1)由曲線C1的參數(shù)方程能求出曲線C1的普通方程,由此能求出曲線C的極坐標(biāo)方程;設(shè)點(diǎn)B的極坐標(biāo)為(ρ,θ),點(diǎn)A的極坐標(biāo)為(ρ0,θ0),則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,從而ρρ0=8,由此能求出C2的極坐標(biāo)方程.
(2)由|OC|=2,S△ABC=S△OBC﹣S△OAC
|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,由此能求出S△ABC的最小值.
(1)∵曲線C1的參數(shù)方程為
(α為參數(shù)),
∴曲線C1的普通方程為x2+y2﹣2x=0,
∴曲線C的極坐標(biāo)方程為ρ=2cosθ,
設(shè)點(diǎn)B的極坐標(biāo)為(ρ,θ),點(diǎn)A的極坐標(biāo)為(ρ0,θ0),
則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,
∵|OA||OB|=8,∴ρρ0=8,
∴
,ρcosθ=4,
∴C2的極坐標(biāo)方程為ρcosθ=4.
(2)由題設(shè)知|OC|=2,
S△ABC=S△OBC﹣S△OAC
|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,
當(dāng)θ=0時(shí),S△ABC取得最小值為2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)的動(dòng)點(diǎn)P到直線
的距離與到點(diǎn)
的距離比為
.
(1)求動(dòng)點(diǎn)P所在曲線E的方程;
(2)設(shè)點(diǎn)Q為曲線E與
軸正半軸的交點(diǎn),過坐標(biāo)原點(diǎn)O作直線
,與曲線E相交于異于點(diǎn)
的不同兩點(diǎn)
,點(diǎn)C滿足
,直線
和
分別與以C為圓心,
為半徑的圓相交于點(diǎn)A和點(diǎn)B,求△QAC與△QBC的面積之比
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
對(duì)任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,下列結(jié)論中錯(cuò)誤的是
A.
, f(
)=0
B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形
C. 若
是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,
)單調(diào)遞減
D. 若
是f(x)的極值點(diǎn),則
(
)=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃平縣且蘭高中全體師生努力下,有效進(jìn)行了“一對(duì)一輔導(dǎo)戰(zhàn)略”成績(jī)提高了一倍,下列是“優(yōu)秀學(xué)生”,“中等學(xué)生”,“差生”進(jìn)行“一對(duì)一”前后所占比例
戰(zhàn)略前 | 戰(zhàn)略后 | |||||
優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | 優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | |
20% | 50% | 30% | 25% | 45% | 30% | |
則下列結(jié)論正確的是( )
A.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,差生成績(jī)并沒有提高.
B.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,中等生成績(jī)反而下降了.
C.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生成績(jī)提高了.
D.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生與中等生的成績(jī)沒有發(fā)生改變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)寫出函數(shù)的圖象經(jīng)過的一個(gè)定點(diǎn)
的坐標(biāo),并求圖象在點(diǎn)
處的切線方程;
(2)若函數(shù)
對(duì)任意的
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱
中,
,
,
,
.
![]()
求證:面
面
;
若
,在線段
上是否存在一點(diǎn)
,使二面角
的平面角的余弦值為
?若存在,確定點(diǎn)
的位置;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com