【題目】如圖1,在矩形
中,已知
,
,點
,
分別在邊
,
上,且
,將梯形
沿
折起,使
在平面
上的射影
恰好落在線段
靠近
的三等分點處,得到圖2中的立體圖形.
(1)
(2) ![]()
(1)在圖2中,求證:
平面
;
(2)求二面角
的大小.
【答案】(1)見解析;(2)![]()
【解析】
(1)根據(jù)
得
面
,根據(jù)
得
面
,從而得到
面
,所以得到所以
面
;(2)以
為原點建立空間直角坐標系,得到面
的法向量為
,
的法向量為
,根據(jù)向量夾角公式得到二面角
的大小.
(1)證明:在梯形
中,
,
而
面
,
面
,
所以
面
,
在梯形
中,
,
而
面
,
面
,
所以
面
,
面
,
,
所以面
面
,
而
面
,
所以
面
;
(2)如圖,過
作
,作
,
以
為原點,以
,
,
為
,
,
軸建立空間直角坐標系.
由題意可求得
,
,所以
,
于是
,又
,
所以
,
,
設(shè)面
的一個法向量為
,
所以
,則![]()
令
,得
,
又知面
的一個法向量為
,
設(shè)面
與面
所成二面角的大小為
,易知
為銳角,
由(1)的證明可知面
平面
,
所以二面角
,
則
,
即二面角
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=﹣
x﹣
cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為
,投中“貫耳”的概率為
,投中“散射”的概率為
,投中“雙耳”的概率為
,投中“依竿”的概率為
,乙的投擲水平與甲相同,且甲乙投擲相互獨立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結(jié)束時,甲獲勝的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
是邊長為2的菱形,且
,
是矩形,
,且平面
平面
,
點在線段
上移動(
不與
重合),
是
的中點.
![]()
(1)當四面體
的外接球的表面積為
時,證明:
.平面![]()
(2)當四面體
的體積最大時,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)記
表示
中的最小值,設(shè)
,若函數(shù)
至少有三個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北方的冬天戶外冰天雪地,若水管裸露在外,則管內(nèi)的水就會結(jié)冰從而凍裂水管,給用戶生活帶來不便.每年冬天來臨前,工作人員就會給裸露在外的水管“保暖”:在水管外面包裹保溫帶,用一條保溫帶盤旋而上一次包裹到位.某工作人員采用四層包裹法(除水管兩端外包裹水管的保溫帶都是四層):如圖1所示是相鄰四層保溫帶的下邊緣輪廓線,相鄰兩條輪廓線的間距是帶寬的四分之一.設(shè)水管的直徑與保溫帶的寬度都為4cm.在圖2水管的側(cè)面展開圖中,此保溫帶的輪廓線與水管母線所成的角的余弦值是( )(保溫帶厚度忽略不計)
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級有男生
人,學(xué)號為
,
,
,
;女生
人,學(xué)號為
,
,
,
.對高三學(xué)生進行問卷調(diào)查,按學(xué)號采用系統(tǒng)抽樣的方法,從這
名學(xué)生中抽取
人進行問卷調(diào)查(第一組采用簡單隨機抽樣,抽到的號碼為
);再從這
名學(xué)生中隨機抽取
人進行數(shù)據(jù)分析,則這
人中既有男生又有女生的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為( )(注:
)
A.1624B.1024C.1198D.1560
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com