【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=
,DE=3,∠BAD=60,G為BC的中點.
![]()
(1)求證:FG
平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的
點處,乙船在中間
點處,丙船在最后面的
點處,且
.一架無人機在空中的
點處對它們進行數據測量,在同一時刻測得
,
.(船只與無人機的大小及其它因素忽略不計)
![]()
(1)求此時無人機到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
是直線
上任意一點,過
作
,線段
的垂直平分線交
于點
.
(Ⅰ)求點
的軌跡
對應的方程;
(Ⅱ)過點
的直線
與點
的軌跡
相交于
兩點,(
點在
軸上方),點
關于
軸的對稱點為
,且
,求
的外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數學周練成績,用莖葉圖表示如下圖:
![]()
(1)根據莖葉圖中的數據完成下面的
列聯表,并判斷是否有95%的把握認為經常使用手機對學習成績有影響?
及格( | 不及格 | 合計 | |
很少使用手機 | |||
經常使用手機 | |||
合計 |
(2)從50人中,選取一名很少使用手機的同學記為甲和一名經常使用手機的同學記為乙,解一道數列題,甲、乙獨立解決此題的概率分別為
,
,
,若
,則此二人適合結為學習上互幫互助的“師徒”,記
為兩人中解決此題的人數,若
,問兩人是否適合結為“師徒”?
參考公式及數據:
,其中
.
| 0.10 | 0.05 | 0.025 |
| 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市地產數據研究所的數據顯示,2016年該市新建住宅銷售均價走勢如下圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調控措施,10月份開始房價得到很好的抑制.
![]()
(1)地產數據研究所發現,3月至7月的各月均價
(萬元/平方米)與月份
之間具有較強的線性相關關系,試求
關于
的回歸方程;
(2)政府若不調控,依次相關關系預測第12月份該市新建住宅的銷售均價.
參考數據:
,
,
;
回歸方程
中斜率和截距的最小二乘法估計公示分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
與拋物線
共焦點
,拋物線上的點M到y軸的距離等于
,且橢圓與拋物線的交點Q滿足
.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點
作拋物線的切線
交橢圓于
、
兩點,設線段AB的中點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數;又定義行列式
=a1a4﹣a2a3; 函數g(θ)=
(其中0≤θ≤
).
(1)證明:函數f(x)在(0,+∞)上也是增函數;
(2)若函數g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤
, g(θ)>0},N={m|任意的0≤θ≤
, f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0
(1)求證:f(x)是奇函數;
(2)若f(1)=
,試求f(x)在區間[﹣2,6]上的最值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com