【題目】德國數學家科拉茨
年提出了一個著名的猜想:任給一個正整數
,如果
是偶數,就將它減半(即
);如果
是奇數,則將它乘
加
(即
),不斷重復這樣的運算,經過有限步后,一定可以得到
.對于科拉茨猜想,目前誰也不能證明,也不能否定.現在請你研究:如果對正整數
(首項)按照上述規則施行變換后的第
項為
(注:
可以多次出現),則
的所有不同值的個數為( )
A.
B.
C.
D. ![]()
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以平面直角坐標系
的原點為極點,
軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線
的參數方程為
(
為參數),圓
的極坐標方程為
.
(1)求直線
的普通方程與圓
的直角坐標方程;
(2)設曲線
與直線
交于
兩點,若
點的直角坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過研究學生的學習行為,心理學家發現,學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態,隨后學生的注意力開始分散.分析結果和實驗表明,用
表示學生掌握和接收概念的能力(
的值越大,表示接受能力越強),
表示提出和講授概念的時間(單位:分鐘),可以有以下公式:![]()
(1)開講多少分鐘后,學生的接受能力最強?能維持多長時間?
(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
相鄰兩個最高點的距離等于
.
(1)求
的值;
(2)求出函數
的對稱軸,對稱中心;
(3)把函數
圖象上所有點的縱坐標伸長到原來的3倍(橫坐標不變),得到函數
,再把函數
圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數
,不需要過程,直接寫出函數
的函數關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了引導居民合理用水,某市決定全面實施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:
階梯級別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
|
|
|
從本市隨機抽取了10戶家庭,統計了同一月份的月用水量,得到如圖莖葉圖:
![]()
(1)現要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數
的分布列與數學期望;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到
戶月用水量為二階的可能性最大,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數
,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數
,試判斷
是否為“
類函數”?并說明理由;
(2)設
是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com