【題目】設數列{an}的前n項和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an﹣1表示an;
(2)求數列{an}的通項公式;
(3)設Tn=
+
+
+…+
,求證:Tn<
.
【答案】
(1)解:數列{an}的前n項和為Sn,且2Sn=(n+2)an﹣1(n∈N*).
令n=1時,2S1=3a1﹣1,
解得:a1=1
由于:2Sn=(n+2)an﹣1①
所以:2Sn+1=(n+3)an+1﹣1②
②﹣①得:2an+1=(n+3)an+1﹣(n+2)an,
整理得:
,
則:
,
即:
.
(2)解:由于:
,
則:
,…,
,
利用疊乘法把上面的(n﹣1)個式子相乘得:
,
即: ![]()
當n=1時,a1=1符合上式,
所以數列的通項公式是:
.
(3)證明:由于:
,
所以:
,
則:
=2(
),
所以:
…+ ![]()
= ![]()
=2(
)
=
.
【解析】(1)首先利用賦值法求出數列的首項,進一步建立數列an﹣1和an間的聯系;(2)利用疊乘法求出數列的通項公式.(3)利用裂項相消法求出數列的和,進一步利用放縮法求出結果.
【考點精析】本題主要考查了數列的前n項和和數列的通項公式的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系
;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令
.
(Ⅰ)證明:數列{bn}是等差數列;
(Ⅱ)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為
,則
的取值范圍為( )
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
![]()
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;
(2)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的
列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
![]()
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com