【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實數(shù)a的取值范圍為 .
【答案】![]()
【解析】解:由x2﹣x﹣2a=0得2a=x2﹣x,
由x2﹣ax﹣1=0(x≠0)得ax=x2﹣1,則2a=2x﹣
,
作出函數(shù)y=x2﹣x和y=2x﹣
的函數(shù)圖象如下圖:
由x2﹣x=2x﹣
得,x2﹣3x+
=0,則
=0,
∴
=0,
解得x=1或x=1
或x=
,
∵x1<x3<x2<x4 , 且當x=
時,可得a=
,
∴由圖可得,0<a<
,
所以答案是:
.![]()
【考點精析】通過靈活運用函數(shù)的零點,掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知橢圓
的離心率為
,且過點
.
(1)求
的方程;
(2)若動點
在直線
上,過
作直線交橢圓
于
兩點,使得
,再過
作直線
,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】.已知函數(shù)
.
(1)求過點
的
圖象的切線方程;
(2)若函數(shù)
存在兩個極值點
,
,求
的取值范圍;
(3)當
時,均有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
,傾斜角為
的直線與橢圓相交于
兩點,且線段
的中點為
.過橢圓
內(nèi)一點
的兩條直線分別與橢圓交于點
,且滿足
,其中
為實數(shù).當直線
平行于
軸時,對應(yīng)的
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)當
變化時,
是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣a),a∈R.
(1)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在(﹣3,0)上單調(diào)遞減,試求a的取值范圍;
(3)若函數(shù)f(x)的最小值為﹣2e,試求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為
,
,
,女隊每人答對的概率都是
,設(shè)每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=
(a>0,且a≠1)的值域為(﹣∞,+∞),則實數(shù)a的取值范圍是( )
A.(3,+∞)
B.(0,
]
C.(1,3)
D.[
,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5
,b=5,求sinA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
為坐標原點,
是橢圓
上的點,設(shè)動點
滿足
.
(1)求動點
的軌跡
的方程;
(2)若直線
與曲線
相交于
,
兩個不同點,求
面積的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com