【題目】
已知函數(shù)
.
(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點(diǎn);
(2)設(shè)x0是f(x)的一個零點(diǎn),證明曲線y=ln x 在點(diǎn)A(x0,ln x0)處的切線也是曲線
的切線.
【答案】(1)函數(shù)
在
和
上是單調(diào)增函數(shù),證明見解析;
(2)證明見解析.
【解析】
(1)對函數(shù)
求導(dǎo),結(jié)合定義域,判斷函數(shù)的單調(diào)性;
(2)先求出曲線
在
處的切線
,然后求出當(dāng)曲線
切線的斜率與
斜率相等時,證明曲線
切線
在縱軸上的截距與
在縱軸的截距相等即可.
(1)函數(shù)
的定義域?yàn)?/span>
,
,因?yàn)楹瘮?shù)
的定義域?yàn)?/span>
,所以
,因此函數(shù)
在
和
上是單調(diào)增函數(shù);
當(dāng)
,時,
,而
,顯然當(dāng)
,函數(shù)
有零點(diǎn),而函數(shù)
在
上單調(diào)遞增,故當(dāng)
時,函數(shù)
有唯一的零點(diǎn);
當(dāng)
時,
,
因?yàn)?/span>
,所以函數(shù)
在
必有一零點(diǎn),而函數(shù)
在
上是單調(diào)遞增,故當(dāng)
時,函數(shù)
有唯一的零點(diǎn)
綜上所述,函數(shù)
的定義域
內(nèi)有2個零點(diǎn);
(2)因?yàn)?/span>
是
的一個零點(diǎn),所以![]()
,所以曲線
在
處的切線
的斜率
,故曲線
在
處的切線
的方程為:
而
,所以
的方程為
,它在縱軸的截距為
.
設(shè)曲線
的切點(diǎn)為
,過切點(diǎn)為
切線
,
,所以在
處的切線
的斜率為
,因此切線
的方程為
,
當(dāng)切線
的斜率
等于直線
的斜率
時,即
,
切線
在縱軸的截距為
,而
,所以
,直線
的斜率相等,在縱軸上的截距也相等,因此直線
重合,故曲線
在
處的切線也是曲線
的切線.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )
A. 3寸B. 4寸C. 5寸D. 6寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
![]()
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計學(xué)知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月3日嫦娥四號探測器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日
點(diǎn)的軌道運(yùn)行.
點(diǎn)是平衡點(diǎn),位于地月連線的延長線上.設(shè)地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,
點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動定律和萬有引力定律,r滿足方程:
.
設(shè)
,由于
的值很小,因此在近似計算中
,則r的近似值為
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖
,四邊形
中,
是
的中點(diǎn),
,
,
,
,將(圖
)沿直線
折起,使
(如圖
).
![]()
(1)求證:
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是各項(xiàng)均為正數(shù)的等比數(shù)列,
.
(1)求
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入
萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入
萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示,
與
之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
![]()
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com