設(shè)橢圓
的左焦點(diǎn)為F, 離心率為
, 過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若
, 求k的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱.![]()
(Ⅰ)若點(diǎn)
的坐標(biāo)為
,求
的值;
(Ⅱ)若橢圓
上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線C:
的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若
,求線段
中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為
,當(dāng)焦點(diǎn)為
時(shí),求
的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線
的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若以
為直徑的圓經(jīng)過原點(diǎn)
,求直線
的方程;
(2)若線段
的中垂線交
軸于點(diǎn)
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為
,曲線C2的參數(shù)方程為
為參數(shù))。
(1)當(dāng)
時(shí),求曲線Cl與C2公共點(diǎn)的直角坐標(biāo);
(2)若
,當(dāng)
變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
與直線
相交于
兩點(diǎn).
(1)若橢圓的半焦距
,直線
與
圍成的矩形
的面積為8,
求橢圓的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),求證:
;
(3)在(2)的條件下,若橢圓的離心率
滿足
,求橢圓長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)動(dòng)點(diǎn)
到點(diǎn)
的距離等于它到直線
的距離,記點(diǎn)
的軌跡為曲
.
(Ⅰ)求曲線
的方程;
(Ⅱ)若點(diǎn)
,
,
是
上的不同三點(diǎn),且滿足
.證明:
不可能為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過直線y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com