【題目】如圖所示,已知正方體ABCD-A1B1C1D1.
![]()
(1)求證:平面A1BD∥平面B1D1C.
(2)若E,F分別是AA1,CC1的中點,求證:平面EB1D1∥平面FBD.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)由
,得
,進而證得平面
平面
.
(2)由
,得
,再由
,則
,進而證得
平面
,即可得到結論.
試題解析:
(1)因為
,所以四邊形BB1D1D是平行四邊形,
![]()
所以B1D1∥BD,又BD平面B1D1C,B1D1平面B1D1C,所以BD∥平面B1D1C.
同理A1D∥平面B1D1C,又A1D∩BD=D,所以平面A1BD∥平面B1D1C.
(2)由BD∥B1D1,得BD∥平面EB1D1,取BB1的中點G,連接AG,GF,易得AE∥B1G,
又因為AE=B1G,所以四邊形AEB1G是平行四邊形,所以B1E∥AG.易得GF∥AD.
又因為GF=AD,所以四邊形ADFG是平行四邊形,所以AG∥DF,所以B1E∥DF,
DF平面EB1D1,B1E平面EB1D1,所以DF∥平面EB1D1.
又因為BD∩DF=D,所以平面EB1D1∥平面FBD.
科目:高中數學 來源: 題型:
【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是
,且與兩坐標軸圍成的三角形的面積是6;
(2)經過兩點A(1,0)、B(m,1);
(3)經過點(4,-3),且在兩坐標軸上的截距的絕對值相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構成模式,第一個“3”是語文、數學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體S,從學生群體S中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數及人數統計如表:
選考物理、化學、生物的科目數 | 1 | 2 | 3 |
人數 | 5 | 25 | 20 |
(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數量不相等的概率;
(II)從所調查的50名學生中任選2名,記X表示這2名學生選考物理、化學、生物的科目數量之差的絕對值,求隨機變量X的分布列和數學期望;
(III)將頻率視為概率,現從學生群體S中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數記作Y,求事件“y≥2”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信紅包是一款可以實現收發紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環境下,對它們搶到的紅包個數進行統計,得到如表數據:
型號 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果搶到紅包個數超過5個的手機型號為“優”,否則“非優”,請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規模宣傳銷售.
①求在型號Ⅰ被選中的條件下,型號Ⅱ也被選中的概率;
②以X表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量X的分布列及數學期望E(X).
下面臨界值表供參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個三棱錐.求:
![]()
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在兩塊鋼板上打孔,用釘帽呈半球形、釘身為圓柱形的鉚釘(圖1)穿在一起,在沒有帽的一端錘打出一個帽,使得與釘帽的大小相等.鉚合的兩塊鋼板,成為某種鋼結構的配件,其截面圖如圖2.(單位:mm,加工中不計損失).
![]()
![]()
(1)若釘身高度是釘帽高度的2倍,求鉚釘的表面積.
(2)若每塊鋼板的厚度為12mm,求釘身的長度(結果精確到1 mm).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:直線mx﹣y+1=0與圓(x﹣2)2+y2=4有公共點;設命題q:實數m滿足方程
+
=1表示雙曲線.
(1)若“p∧q”為真命題,求實數m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內每立方米空氣中的含藥量
(毫克)與時間
(小時)成正比;藥物釋放完畢后,
與
的函數關系式為
(
為常數),如圖所示.據圖中提供的信息,回答下列問題:
![]()
(1)寫出從藥物釋放開始,每立方米空氣中的含藥量
(毫克)與時間
(小時)之間的函數關系式;
(2)據測定,當空氣中每立方米的含藥量降低到
毫克以下時,學生方可進教室。那么藥物釋放開始,至少需要經過多少小時后,學生才能回到教室?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com