【題目】將5名實(shí)習(xí)生分配到三個(gè)班實(shí)習(xí),每班至少1名,則分配方案共有( )
A. 240種 B. 150種 C. 180種 D. 60種
【答案】B
【解析】分析:根據(jù)題意,分兩種情況討論:①將5名教師分成三組,一組1人,另兩組都是2人,②將5名教師分成三組,一組3人,另兩組都是1人,由組合數(shù)公式計(jì)算可得每種情況下的分配方案數(shù)目,由分類計(jì)數(shù)原理計(jì)算可得答案.
詳解:將5名實(shí)習(xí)生分配到3個(gè)班實(shí)習(xí),每班至少1名,有2種情況:
①將5名生分成三組,一組1人,另兩組都是2人,有
種分組方法,再將3組分到3個(gè)班,共有
種不同的分配方案,
②將5名生分成三組,一組3人,另兩組都是1人,有![]()
種分組方法,再將3組分到3個(gè)班,共有
種不同的分配方案,
共有
種不同的分配方案,
故選B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知圓C過點(diǎn)P(1,1),且與圓M:
關(guān)于直線
對(duì)稱.
(1)求圓C的方程:
(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求
最小值;
(3)過點(diǎn)P作兩條相異直線分別與圓C交與A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP與直線AB是否平行?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
![]()
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時(shí),
.
(Ⅰ)求函數(shù)
在R上的解析式;
(Ⅱ)若
,函數(shù)
,是否存在實(shí)數(shù)m使得
的最小值為
,若存在,求m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
+
.
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=
[f2(x)﹣2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若﹣m2+2tm+
≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
,有下列結(jié)論:
①
的定義域?yàn)?/span>(-1, 1); ②
的值域?yàn)?/span>(
,
);
③
的圖象關(guān)于原點(diǎn)成中心對(duì)稱; ④
在其定義域上是減函數(shù);
⑤對(duì)
的定義城中任意
都有
.
其中正確的結(jié)論序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新產(chǎn)品投放市場(chǎng)一段時(shí)間后,經(jīng)過調(diào)研獲得了時(shí)間
(天數(shù))與銷售單價(jià)
(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)更適宜作價(jià)格
關(guān)于時(shí)間
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)若該產(chǎn)品的日銷售量
(件)與時(shí)間
的函數(shù)關(guān)系為
(
),求該產(chǎn)品投放市場(chǎng)第幾天的銷售額最高?最高為多少元?(結(jié)果保留整數(shù))
附:對(duì)于一組數(shù)據(jù)
,
,
,
,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
.
Ⅰ
若函數(shù)
在
和
上單調(diào)性相反,求
的解析式;
Ⅱ
若
,不等式
在
上恒成立,求a的取值范圍;
Ⅲ
已知
,若函數(shù)
在區(qū)間
內(nèi)有且只有一個(gè)零點(diǎn),試確定實(shí)數(shù)a的范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com