【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,O為AC與BD的交點,E為AD的中點,A1E⊥平面ABCD.
![]()
(1)證明:A1O∥平面B1CD1;
(2)設M是OD的中點,證明:平面A1EM⊥平面B1CD1.
科目:高中數學 來源: 題型:
【題目】定義:如果函數f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足
,
,則稱函數f(x)是[a,b]上的“雙中值函數”.已知函數f(x)=x3﹣x2+a是[0,a]上的“雙中值函數”,則實數a的取值范圍是( )
A.![]()
B.(
)
C.(
,1)
D.(
,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
=1(a>b>0),F1、F2分別為橢 圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B、![]()
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若
=2
,
=
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=90°,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG.
![]()
(1)求證:EC⊥CD.
(2)求證:AG∥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數關系t=
且該食品在4℃的保鮮時間是16小時。已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示。給出以下四個結論:![]()
①該食品在6℃的保鮮時間是8小時;
②當x∈[-6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內;
④到了此日14時,甲所購買的食品已然過了保鮮時間。
其中,所有正確結論的序號是__________。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com