已知函數(shù)f(x)的定義域?yàn)?STRONG>R,對(duì)任意實(shí)數(shù)m、n,均有f(m+n)=f(m)+f(n)-1,且f(-
)=0,當(dāng)x>-
時(shí),有
f(x)>0.
(1)求證:f(x)是單調(diào)遞增函數(shù);
(2)解不等式1+f(
)≤f(1)+f(ax),其中a為正常數(shù).
(1)證明:設(shè)x1<x2,則x2-x1-
>-
.
依題意,有f(x2-x1-
)>0.
∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)
=f(x2-x1)-1
=f(x2-x1)+f(-
)-1
=f[(x2-x1)-
]>0,
即f(x1)<f(x2).∴f(x)是R上的增函數(shù).
(2)解:1+f(
)≤f(1)+f(ax)
f(1)+f(ax)-1≥f(
)
f(ax+1)≥f(
)![]()
≤ax+1.
由此得1≤1+ax,即ax≥0.
又a>0,知原不等式又等價(jià)于
也就是![]()
故當(dāng)a≥1時(shí),解集為{x|x≥0};
當(dāng)0<a<1時(shí),解集為{x|0≤x≤
}.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com