設(shè)函數(shù)
,其中![]()
(1)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(2)求
的極值點(diǎn);
(3)證明對任意的正整數(shù)
,不等式
都成立。
(1)單調(diào)遞增(2)無極值(3)見解析
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用
(1)利用函數(shù)的導(dǎo)數(shù)得到導(dǎo)數(shù)符號與單調(diào)性的關(guān)系的運(yùn)用。
(2)在第一問的基礎(chǔ)上分析得到極值點(diǎn)。
(3)對于不等式恒成立的證明,主要是轉(zhuǎn)化為函數(shù)的最值問題來處理的數(shù)學(xué)思想的運(yùn)用。
解:(1)由題意知,
,
),![]()
設(shè)
,其圖象的對稱軸為
,
,
所以![]()
即
,
上恒成立,
,
時(shí),
,
,
上單調(diào)遞增。
(2)①由(1)得,
函數(shù)
無極值點(diǎn);
②
時(shí),
有兩個(gè)相同的解
,
,
,
;
,
時(shí),
,
,
上無極值;
③
時(shí),
:
, ![]()
,
,
,![]()
:
|
|
|
|
|
|
|
- |
0 |
+ |
|
|
減 |
極小值 |
增 |
由此表可知:
,
有唯一極小值點(diǎn)
;
當(dāng)
時(shí),![]()
,所以
,
,![]()
此時(shí),
:
|
|
|
|
( |
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
增 |
極大植 |
減 |
極小值 |
增 |
由此表可知:
時(shí),
有一個(gè)極大值點(diǎn)
和一個(gè)
極小值點(diǎn)![]()
綜上所述,:
,
有唯一極小值點(diǎn)
;
時(shí),
有一個(gè)極大值點(diǎn)
和一個(gè)極小值點(diǎn)
;
,
無極值點(diǎn)。
(3)設(shè)
,1〕,則不等式
化為
,
即![]()
設(shè)函數(shù)![]()
,則![]()
所以,當(dāng)
時(shí),
函數(shù)
在〔0,1〕上單調(diào)遞增,又![]()
,1〕時(shí),恒有
,即
,
因此不等式
成立
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當(dāng)
時(shí),不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆甘肅省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
,其中
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)若不等式
的解集為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省福州市高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題滿10分)
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)
,其中![]()
(1)求
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),證明不等式:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省浦城縣第一學(xué)期高二數(shù)學(xué)期末考試卷(文科) 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)
的取值范圍;
(3)『附加題』是否存在最小的正整數(shù)
,使得當(dāng)
時(shí),不等式
恒成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com