【題目】如圖,四棱錐
,側(cè)面
是邊長為
的正三角形,且與底面垂直,底面
是
的菱形,
為
的中點.
(1)求證:
;
(2)求點
到平面
的距離.
![]()
【答案】(Ⅰ)詳見解析(Ⅱ)![]()
【解析】試題分析:(1)由題可得
為等邊三角形,由
為
中點,可得
,可證得
平面
,可得結(jié)論;(2)利用體積相等
,可將點到面的距離轉(zhuǎn)化為體積相等問題.
試題解析:(1)證法一:取
中點
,連結(jié)
,
依題意可知
均為正三角形,
所以
,又
,
所以
平面
,又
平面
,
所以![]()
證法二:連結(jié)
,依題意可知
均為正三角形,
又
為
的中點,所以
,
又
,
所以
平面
,
又
平面
,所以![]()
![]()
(2)點
到平面
的距離即點
到平面
的距離,
由(1)可知
,又平面
平面
,
平面
平面
?平面
,
所以
平面
,即
為三棱錐
的體高在
中,
,
在
中,
,邊
上的高
,
所以
的面積
,設(shè)點
到平面
的距離為
,
由
得
,
又
,
所以
,解得
,
所以點
到平面
的距離為![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為
元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:
交強(qiáng)險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
| 上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
| 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
| 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
| 上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 |
|
|
|
|
|
|
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定,
,記
為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求
的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
與圓C:
相交于A,B兩點,弦AB中點為M(0,1),
(1)求實數(shù)
的取值范圍以及直線
的方程;
(2)若圓C上存在四個點到直線
的距離為
,求實數(shù)a的取值范圍;
(3)已知N(0,﹣3),若圓C上存在兩個不同的點P,使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,設(shè)函數(shù)
.
(1)若函數(shù)
的圖象關(guān)于直線
對稱,且
時,求函數(shù)
的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)
時,函數(shù)
有且只有一個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)![]()
.
(1)求![]()
在![]()
處的切線方程;
(2)令![]()
,求![]()
的單調(diào)區(qū)間;
(3)若任意![]()
且![]()
,都有![]()
恒成立,求實數(shù)![]()
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年1月1日,作為貴陽市打造“千園之城”27個示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
![]()
(1)根據(jù)條件完成下列![]()
列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
愿意 | 不愿意 | 總計 | |
男生 | |||
女生 | |||
總計 |
(2)水上挑戰(zhàn)項目共有兩關(guān),主辦方規(guī)定:挑戰(zhàn)過程依次進(jìn)行,每一關(guān)都有兩次機(jī)會挑戰(zhàn),通過第一關(guān)后才有資格參與第二關(guān)的挑戰(zhàn),若甲參加每一關(guān)的每一次挑戰(zhàn)通過的概率均為![]()
,記甲通過的關(guān)數(shù)為![]()
,求![]()
的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
| 0.1 | 0.05 | 0.025 | 0.01 |
| 2.706 | 3.841 | 5.024 | 6.635 |
![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一醫(yī)用放射性物質(zhì)原來質(zhì)量為a,每年衰減的百分比相同,當(dāng)衰減一半時,所用時間是10年,根據(jù)需要,放射性物質(zhì)至少要保留原來的,否則需要更換.已知到今年為止,剩余的為原來的
,
(1)求每年衰減的百分比;
(2)到今年為止,該放射性物質(zhì)已衰減了多少年?
(3)今后至多還能用多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓
上每一點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>
,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l:
與C的交點為P1,P2,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com