【題目】已知橢圓
:
的右焦點為
,過
作兩條直線分別與圓
:
相切于
,且
為直角三角形. 又知橢圓
上的點與圓
上的點的最大距離為
.
(1)求橢圓
及圓
的方程;
(2)若不經(jīng)過點
的直線
:
(其中
)與圓
相切,且直線
與橢圓
交于
,求
的周長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有
份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗
次;②混合檢驗,將其
(
且
)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這
份的血液全為陰性,因而這
份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗,此時這
份血液的檢驗次數(shù)總共為
次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為
.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中
(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為
,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為
.
(i)運用概率統(tǒng)計的知識,若
,試求
關(guān)于
的函數(shù)關(guān)系式
;
(ii)若
,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求
的最大值.
參考數(shù)據(jù):
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(
)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為
(
)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為
,當(dāng)
時,
最大,則
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)),直線
經(jīng)過點
且傾斜角為
.
(1)求曲線
的極坐標(biāo)方程和直線
的參數(shù)方程;
(2)已知直線
與曲線
交于
,滿足
為
的中點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“水資源與永恒發(fā)展”是2015年聯(lián)合國世界水資源日主題,近年來,某企業(yè)每年需要向自來水廠所繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)=
(x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費用與該企業(yè)4年共將消耗的水費之和.
(1)試解釋C(0)的實際意義,并建立y關(guān)于x的函數(shù)關(guān)系式并化簡;
(2)當(dāng)x為多少平方米時,y取得最小值,最小值是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)),直線
經(jīng)過點
且傾斜角為
.
(1)求曲線
的極坐標(biāo)方程和直線
的參數(shù)方程;
(2)已知直線
與曲線
交于
,滿足
為
的中點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,直線
:
與以原點為圓心,以橢圓
的短半軸長為半徑的圓相切.
為左頂點,過點
的直線交橢圓
于
,
兩點,直線
,
分別交直線
于
,
兩點.
![]()
(1)求橢圓
的方程;
(2)以線段
為直徑的圓是否過定點?若是,寫出所有定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
求函數(shù)
在
處的切線方程;
若
在
,
處導(dǎo)數(shù)相等,證明:
.
若對于任意
,直線
與函數(shù)
圖象都有唯一公共點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形
中,
,
,
,
為
的中點,沿
將
折起,使得點
到點
位置,且
,
為
的中點,
是
上的動點(與點
,
不重合).
![]()
(Ⅰ)證明:平面
平面
垂直;
(Ⅱ)是否存在點
,使得二面角
的余弦值
?若存在,確定
點位置;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com